Advertisement

Marine Biology

, Volume 158, Issue 7, pp 1523–1535 | Cite as

Life-history and demographic spatial variation in Mediterranean populations of the opportunistic polychaete Ophryotrocha labronica (Polychaeta, Dorvilleidae)

  • Gloria Massamba-N’Siala
  • Roberto Simonini
  • Piero Cossu
  • Ferruccio Maltagliati
  • Alberto Castelli
  • Daniela Prevedelli
Original Paper

Abstract

The spatial scale of life-history and demographic variation was investigated in the opportunistic polychaete Ophryotrocha labronica La Greca and Bacci. Individuals were collected along the Italian coasts from three thermally different biogeographical regions of the Mediterranean Sea. For each region, populations from four harbours were considered, and for each harbour, two sites were examined. Life-history and demographic traits were investigated after one generation under a common garden experiment, and their variation at the three spatial scales was assessed. All the traits showed high variability with regard to site. A number of life-history and all demographic traits also varied according to the biogeographical region. Conversely, no differences were found between harbours, suggesting that geographical isolation did not contribute to phenotypic variation. Results confirmed the central role of local conditions for the evolution of life history in species colonizing heterogeneous environments, but they also pointed to the importance of large-scale factors in shaping the phenotypic responses of O. labronica, demonstrating the need for a multi-scale approach for obtaining a good measure of natural variation in widespread opportunistic species.

Keywords

Population Growth Rate Reproductive Event Biogeographical Region Common Garden Experiment Total Fecundity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the national PRIN 2005 project (prot. 2005050952), funded by the Ministero dell’Istruzione Università e Ricerca. Thanks are due to the many students and collaborators for their assistance in the field and laboratory activities, especially Francesco Graziosi, Valentina Grandi, Roberto Bellesia and Fabrizio Greco. The authors thank Dr. Katie Henry for English language revision.

Supplementary material

227_2011_1668_MOESM1_ESM.doc (210 kb)
Supplementary material 1 (DOC 209 kb)

References

  1. Åkesson B (1972a) Sex determination in Ophryotrocha labronica (Polychaeta, Dorvilleidae). In: Battaglia B (ed) Fifth European marine biology symposium. Piccin Editore, Padova, pp 163–172Google Scholar
  2. Åkesson B (1972b) Incipient reproductive isolation between geographic populations of Ophryotrocha labronica (Polychaete, dorvilleidae). Zool Scr 1:207–210CrossRefGoogle Scholar
  3. Åkesson B (1976) Temperature and life cycle in Ophryotrocha labronica (Polychaeta, Dorvilleidae). Ophelia 15(1):37–47CrossRefGoogle Scholar
  4. Åkesson B, Paxton H (2005) Biogeography and incipient speciation in O. labronica (Polychaeta, Dorvilleidae). Mar Biol Res 1:127–139CrossRefGoogle Scholar
  5. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  6. Angiletta MJ (2009) Thermal adaptation. A theoretical and empirical synthesis. University Press, OxfordCrossRefGoogle Scholar
  7. Arenas F, Bishop JDD, Carlton JT, Dyrynda PJ, Farnham WF, Gonzalez DJ, Jacobs MW, Lambert C, Lambert G, Nielsen SE, Pederson JA, Porter JS, Ward S, Wood CA (2006) Alien species and other notable records from a rapid assessment survey of marinas on the south coast of England. J Mar Biol Assoc UK 86:1329–1337CrossRefGoogle Scholar
  8. Bacci G (1978) Genetics of sex determination in Ophryotrocha labronica (Annelida, Polychaeta). In: Battaglia B, Beardmore J (eds) Marine organisms. Plenum Press, New York, pp 549–571Google Scholar
  9. Barbeau MA, Grecian LA, Arnold EE, Sheahan DC, Hamilton DJ (2009) Spatial and temporal variation in the population dynamics of the intertidal amphipod Corophium volutator in the upper bay of Fundy, Canada. J Crustac Biol 29(4):491–506CrossRefGoogle Scholar
  10. Berglund A (1991) To change or not to change sex: a comparison between two Ophryotrocha species (Polychaeta). Evol Ecol 5:128–135CrossRefGoogle Scholar
  11. Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21CrossRefGoogle Scholar
  12. Bianchi CN, Morri C (1993) Range extension of warmwater species in the northern Mediterranean: evidence for climatic fluctuations? Porcup Newsl 5(7):156–159Google Scholar
  13. Brasseur P, Beckers JM, Brankart JM, Schoenauen R (1996) Seasonal temperature and salinity fields in the Mediterranean Sea: climatological analyses of an historical data set. Deep Sea Res 42(2):159–192CrossRefGoogle Scholar
  14. Buckley CR, Irschick DJ, Adolph SC (2010) The contributions of evolutionary divergence and phenotypic plasticity to geographic variation in the western fence lizard, Sceloporus occidentalis. Biol J Linn Soc 99:84–98CrossRefGoogle Scholar
  15. Camill P (2000) How much do local factors matter for predicting transient ecosystem dynamics? Suggestions from permafrost formation in boreal peatlands. Glob Chang Biol 6:169–182CrossRefGoogle Scholar
  16. Carlton JT, Geller JB (1993) Ecological roulette: the global transport of non indigenous marine organisms. Science 261:78–82CrossRefGoogle Scholar
  17. Caswell H (1982) Optimal life histories and the maximization of the reproductive value: a general theorem for complex life cycles. Ecology 63:1218–1222CrossRefGoogle Scholar
  18. Caswell H (2000) Matrix population models, 2nd edn. Sinauer, Sunderland MassachusettsGoogle Scholar
  19. Çinar ME, Ergen Z, Dağli E, Petersen ME (2005) Alien species of spionid polychaetes (Streblospio gynobranchiata and Polydora cornuta) in Izmir Bay, eastern Mediterranean. J Mar Biol Assoc UK 85:821–827CrossRefGoogle Scholar
  20. Çinar ME, Katağan T, Koçak F, Öztürk B, Ergen Z, Kocatas A, Önen M, Kirkim F, Bakir K, Kurt G, Dağli E, Açik S, Doğan A, Tahir Ö (2008) Faunal assemblages of the mussel Mytilus galloprovincialis in and around Alsancak Harbour (Izmir Bay, eastern Mediterranean) with special emphasis on alien species. J Mar Syst 71:1–17CrossRefGoogle Scholar
  21. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  22. Cognetti G (1992) Colonization of stressed coastal environments. Mar Pollut Bull 24(1):12–14CrossRefGoogle Scholar
  23. Cognetti G (1994) Colonization of brackish waters. Mar Pollut Bull 28(10):583–586CrossRefGoogle Scholar
  24. Cognetti G, Maltagliati F (2000) Biodiversity and adaptive mechanism in brackish water fauna. Mar Pollut Bull 40(1):7–14CrossRefGoogle Scholar
  25. Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998a) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786CrossRefGoogle Scholar
  26. Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS (1998b) Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol 67:600–612CrossRefGoogle Scholar
  27. Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, PrincetonGoogle Scholar
  28. Fraschetti S, Terlizzi A, Benedetti-Cecchi L (2005) Patterns of distribution of marine assemblages from rocky shores: evidence of relevant scales of variation. Mar Ecol Progr Ser 296:13–29CrossRefGoogle Scholar
  29. Gardner RH, Kemp WM, Kennedy VS, Petersen JE (2001) Scaling relationships in experimental ecology. Columbia University Press, New YorkCrossRefGoogle Scholar
  30. Gould SJ, Johnston RF (1972) Geographic variation. Ann Rev Ecol Syst 3:457–498CrossRefGoogle Scholar
  31. Green RH (1979) Sampling design and statistical methods for environmental biologists. Wiley, New YorkGoogle Scholar
  32. Hofmann GE (2005) Patterns of Hsp gene expression in ectothermic marine organisms on small to large. Integr Comp Biol 45:247–255CrossRefGoogle Scholar
  33. Huey RB, Berrigan D (2001) Temperature, demography and ectotherm fitness. Am Nat 158(2):204–210CrossRefGoogle Scholar
  34. Huston MA (1999) Local processes and regional patterns: appropriate scales for understanding variation in the diversity of plant and animals. Oikos 86:393–401CrossRefGoogle Scholar
  35. Karalis P, Antoniadou C, Chintiroglou CC (2003) Structure of the artificial hard substrate assemblages in ports Thermaikos Gulf (North Aegean Sea). Oceanol Acta 26:215–224CrossRefGoogle Scholar
  36. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Kinne O (1962) Irreversible nongenetic adaptation. Comp Biochem Physiol 5:265–282CrossRefGoogle Scholar
  38. Kinne O (1970) Temperature, animals, invertebrates. In: Kinne O (ed) Environmental factors. Mar Ecol Vol I, GermanyGoogle Scholar
  39. La Greca M, Bacci G (1962) Una nuova specie di Ophryotrocha delle coste tirreniche. Boll Zool 29:13–23CrossRefGoogle Scholar
  40. Lanfranco M, Rolando A (1981) Sexual races and reproductive isolation in O. labronica La Greca and Bacci (Annelida, Polychaeta). Boll Zool 48:291–294CrossRefGoogle Scholar
  41. Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967CrossRefGoogle Scholar
  42. Levin LA, Creed EL (1986) Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar Biol 92:103–113CrossRefGoogle Scholar
  43. Levin LA, Caswell H, Bridges T, Di Bacco C, Cabrera D, Plaia G (1996) Demographic responses of estuarine polychaetes to pollutants: life table response experiment. Ecol Appl 6:1295–1313CrossRefGoogle Scholar
  44. Levinton JS (1983) The latitudinal compensation hypothesis: growth data and a model of latitudinal growth differentiation based upon energy budgets. I. Intraspecific comparison of Ophryotrocha (Polychaeta: Dorvilleidae). Biol Bull 165:686–698CrossRefGoogle Scholar
  45. Mac Nally R, Quinn GP (1998) Symposium introduction: the importance of scale in ecology. Aust J Ecol 23:1–7CrossRefGoogle Scholar
  46. O’Neill RV (1988) Hierarchy theory and global change. In: Roughgarden J, May RM, Levin SA (eds) Scales and global change. Wiley, Chichester, pp 29–45Google Scholar
  47. O’Neill RV, De Angelis DL, Waide JB, Allen TFH (1986) A hierarchical concept of ecosystems. Princeton University Press, PrincetonGoogle Scholar
  48. Olive PJW (1995) Annual breeding cycles in marine invertebrates and environmental temperature: probing the proximate and ultimate causes of reproductive synchrony. J Therm Biol 20:79–90CrossRefGoogle Scholar
  49. Olive PJW, Lewis C, Beardall V (2000) Fitness components of seasonal reproduction: an analysis using Nereis virens as a life history model. Ocean Acta 23:377–389CrossRefGoogle Scholar
  50. Paavola M, Laine AO, Helavuori M, Fraufvelin P (2008) Profiling four brackish-water harbours: zoobenthic composition and invasion status. Boreal Env Res 13:159–175Google Scholar
  51. Paxton H, Åkesson B (2007) Redescription of Ophryotrocha puerilis and O. labronica (Annelida, Dorvilleidae). Mar Biol Res 3:3–19CrossRefGoogle Scholar
  52. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  53. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644CrossRefGoogle Scholar
  54. Philips JD (2002) Global and local factors in earth surface systems. Ecol Modell 149:257–272CrossRefGoogle Scholar
  55. Premoli MC, Sella G, Berra GP (1996) Heritable variation of sex ratio in polychaete worm. J Evol Biol 9:845–854CrossRefGoogle Scholar
  56. Prevedelli D, Simonini R (2001) Effect of temperature on demography of Ophryotrocha labronica (Polychaeta, Dorvilleidae). Vie Milieu 51(4):173–180Google Scholar
  57. Prevedelli D, Massamba-N’Siala G, Simonini R (2005) The seasonal dynamics of six species of Dorvilleidae (Polychaeta) in the harbour of La Spezia (Italy). Mar Ecol 26:286–293CrossRefGoogle Scholar
  58. Prevedelli D, Massamba-N’Siala G, Simonini R (2006) Gonochorism vs. hermaphroditism: relationship between life history and fitness in three species of Ophryotrocha (Polychaeta: Dorvilleidae) with different forms of sexuality. J Anim Ecol 75:203–212CrossRefGoogle Scholar
  59. Rolando A (1984) The sex induction hypothesis and reproductive behaviour in four gonochoristic species of the genus Ophryotrocha (Annelida, Polychaeta). Monit Zool Ital 18:287–299Google Scholar
  60. Sears MW, Angilletta MJ (2003) Life-history variation in the sagebrush lizard: phenotypic plasticity or local adaptation? Ecology 84:1624–1634CrossRefGoogle Scholar
  61. Sgrò CM, Partridge L (2001) Laboratory adaptation of life history in Drosophila. Am Nat 158:657–658CrossRefGoogle Scholar
  62. Simonini R (2002) Distribution and ecology of the genus Ophryotrocha (Polychaeta: Dorvilleidae) in Italian harbours and lagoons. Vie et Milieu 52(1):59–65Google Scholar
  63. Simonini R, Massamba-N’Siala G, Grandi V, Prevedelli D (2009) Distribution of the genus Ophryotrocha (Polychaeta) in Italy: new reports and comments on the biogeography of Mediterranean species. Vie et Milieu 59(1):79–88Google Scholar
  64. Simonini R, Grandi V, Massamba-N’Siala G, Martino MP, Castelli A, Prevedelli D (2010) Diversity, habitat affinities and diet of Ophryotrocha species (Polychaeta, Dorvilleidae) living in Mediterranean harbour habitats. Vie et Milieu 60(1):27–38Google Scholar
  65. Spicer JI, Gaston KJ (1999) Physiological diversity and its ecological implications. Blackwell Science, UK, p 241Google Scholar
  66. Stearns SC (1992) The evolution of life histories. Oxford University Press, New YorkGoogle Scholar
  67. Stearns SC, Hoekstra RF (2003) Evolution: an introduction. Oxford University Press, New YorkGoogle Scholar
  68. Thornhill DJ, Dahlgren TG, Halanych K (2009) The evolution and ecology of Ophryotrocha (Dorvilleidae, Eunicida). In: Shain DH (ed) Annelids as model systems in the biological sciences. John Wiley & Sons, New Jersey, pp 242–256Google Scholar
  69. Trotta V, Calboli FCF, Ziosi M, Guerra D, Pezzoli MC, David JR, Cavicchi S (2006) Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations. BMC Evol Biol 6:67CrossRefGoogle Scholar
  70. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar
  71. Wagenet RJ (1998) Scale issues in agroecological research chains. Nutr Cycl Agroecosyst 50:23–34CrossRefGoogle Scholar
  72. Walther GR, Roques A, Hulme PE, Sykes MT et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24(12):686–693CrossRefGoogle Scholar
  73. Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470CrossRefGoogle Scholar
  74. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3(4):385–397CrossRefGoogle Scholar
  75. Wonham MJ, Carlton JT (2005) Trends in marine biological invasions at local and regional scales: the Northeast Pacific Ocean as a model system. Biol Invasions 7:369–392CrossRefGoogle Scholar
  76. Wu J (1999) Hierarchy and scaling: extrapolating information along a scaling ladder. Can J Remote Sens 25(4):367–380CrossRefGoogle Scholar
  77. Zamer WE, Mangum CP (1979) Irreversible non-genetic temperature adaptation of oxygen uptake in clones of the sea anemone Haliplanella luciae (Verrill). Biol Bull 157:536–547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Gloria Massamba-N’Siala
    • 1
  • Roberto Simonini
    • 1
  • Piero Cossu
    • 2
  • Ferruccio Maltagliati
    • 2
  • Alberto Castelli
    • 2
  • Daniela Prevedelli
    • 1
  1. 1.Dipartimento di BiologiaUniversità di Modena e Reggio EmiliaModenaItaly
  2. 2.Dipartimento di Biologia, Unità di Biologia Marina e EcologiaUniversità di PisaPisaItaly

Personalised recommendations