Marine Biology

, Volume 158, Issue 6, pp 1387–1402 | Cite as

The functional biology and trophic role of krill (Thysanoessa raschii) in a Greenlandic fjord

  • Mette Dalgaard Agersted
  • Torkel Gissel NielsenEmail author
  • Peter Munk
  • Bent Vismann
  • Kristine Engel Arendt
Original Paper


Despite being a key zooplankton group, knowledge on krill biology from the Arctic is inadequate. The present study examine the functional biology and evaluate the trophic role of krill in the Godthåbsfjord (64°N, 51°W) SW Greenland, through a combination of fieldwork and laboratory experiments. Krill biomass was highest in the middle fjord and inner fjord, whereas no krill was found offshore. The dominating species Thysanoessa raschii revealed a type III functional response when fed with the diatom Thalassiosira weissflogii. At food saturation, T. raschii exhibited a daily ration of 1% body C d−1. Furthermore, T. raschii was capable of exploiting plankton cells from 5 to 400 μm, covering several trophic levels of the pelagic food web. The calculated grazing impact by T. raschii on the fjord plankton community was negligible. However, the schooling and migratory behaviour of krill will concentrate and elevate the grazing in specific areas of the euphotic zone.


Phytoplankton Functional Response Clearance Rate Oxygen Consumption Rate Prey Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study (ECOGREEN) was funded by a grant from the Commission for Scientific Research in Greenland (KVUG), the Danish Natural Sciences Research Council, and is a contribution of the Greenland Climate Research Centre. Greenland Institute of Natural Resources is thanked for excellent laboratory facilities and logistical support. Also, we would like to thank Anja Retzel (GINR) for collecting krill biomass data, Prof. Thomas Kiørboe and Dr. Steffen Oppel for statistical advice, and Dr. Kam W. Tang for providing various data on mesozooplankton biomass.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Antezana T, Ray K, Melo C (1982) Trophic behavior of Euphausia superba Dana in laboratory conditions. Polar Biol 1:77–82Google Scholar
  3. Arendt KE, Nielsen TG, Rysgaard S, Tönnesson K (2010) Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar Ecol Prog Ser 401:49–62CrossRefGoogle Scholar
  4. Astthorsson OS, Gislason A (1997) Biology of euphausiids in the subarctic waters north of Iceland. Mar Biol 129:319–330CrossRefGoogle Scholar
  5. Atkinson A, Snÿder R (1997) Krill-copepod interactions at South Georgia, Antarctica, I. Omnivory by Euphausia superba. Marine Ecol Prog Ser 160:63–76CrossRefGoogle Scholar
  6. Atkinson A, Meyer B, Stubing D, Hagen W, Schmidt K, Bathmann UV (2002) Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter—II. Juveniles and adults. Limnol Oceanogr 47:953–966CrossRefGoogle Scholar
  7. Båmstedt U, Karlson K (1998) Euphausiid predation on copepods in coastal waters of the Northeast Atlantic. Marine Ecol Prog Ser 172:149–168CrossRefGoogle Scholar
  8. Båmstedt U, Gifford DJ, Irigoien X, Atkinson A, Roman M (2000) Feeding. In: Harris RP, Wiebe PH, Lenz J, Skjoldal HR, Huntley M (eds) ICES Zooplankton methodology manual. Academic, San DiegoGoogle Scholar
  9. Berge J, Cottier F, Last KS, Varpe O, Leu E, Soreide J, Eiane K, Falk-Petersen S, Willis K, Nygard H, Vogedes D, Griffiths C, Johnsen G, Lorentzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72CrossRefGoogle Scholar
  10. Berggreen U, Hansen B, Kiørboe T (1988) Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar Biol 99:341–352CrossRefGoogle Scholar
  11. Berkes F (1976) Ecology of Euphausiids in the Gulf of St. Lawrence. J Fish Res Board Can 33:1894–1905CrossRefGoogle Scholar
  12. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens HH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefGoogle Scholar
  13. Børsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Marine Ecol Prog Ser 36:171–175CrossRefGoogle Scholar
  14. Boyd CM, Heyraud M, Boyd CN (1984) Feeding of the Antarctic krill Euphausisa superba. J Crustac Biol 14:123–141CrossRefGoogle Scholar
  15. Brierley AS, Saunders RA, Bone DG, Murphy EJ, Enderlein P, Conti SG, Demer DA (2006) Use of moored acoustic instruments to measure short-term variability in abundance of Antarctic krill. Limnol Oceanogr Methods 4:18–29CrossRefGoogle Scholar
  16. Buchholz F, Saborowski R (2000) Metabolic and enzymatic adaptations in northern krill, Meganyctiphanes norvegica, and Antarctic krill, Euphausia superba. Santa Cruz, California, pp 115–129Google Scholar
  17. Cadee GC, Gonzalez H, Schnackschiel SB (1992) Krill diet affects fecal string settling. Polar Biol 12:75–80Google Scholar
  18. Clarke A, Morris DJ (1983) Towards an energy budget for krill: The physiology and biochemistry of Euphausia superba Dana. Polar Biol 2:69–86CrossRefGoogle Scholar
  19. Croxall JP, Everson I, Kooyman GL, Ricketts C, Davis RW (1985) Fur-seal diving behavior in relation to vertical distribution of krill. J Anim Ecol 54:1–8CrossRefGoogle Scholar
  20. Dalpadado P, Ellertsen B, Johannessen S (2008a) Inter-specific variations in distribution, abundance and reproduction strategies of krill and amphipods in the Marginal Ice Zone of the Barents Sea. Deep-Sea Res Part II Top Stud Oceanogr 55:2257–2265CrossRefGoogle Scholar
  21. Dalpadado P, Yamaguchi A, Ellertsen B, Johannessen S (2008b) Trophic interactions of macro-zooplankton (krill and amphipods) in the Marginal Ice Zone of the Barents Sea. Deep-Sea Res Part II Top Stud Oceanogr 55:2266–2274CrossRefGoogle Scholar
  22. Dutz J, Koski M, Jónasdóttir SH (2008) Copepod reproduction is unaffected by diatom aldehydes or lipid composition. Limnol Oceanogr 53:225–235CrossRefGoogle Scholar
  23. Falk-Petersen S, Hagen W, Kattner G, Clarke A, Sargent J (2000) Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Can J Fish Aquat Sci 57:178–191CrossRefGoogle Scholar
  24. Fenchel T (1974) Intrinsic rate of natural increase: the relationship with body size. Oecologia 14:317–326CrossRefGoogle Scholar
  25. Fotel FL, Jensen NJ, Wittrup L, Hansen BW (1999) In situ and laboratory growth by a population of blue mussel larvae (Mytilus edulis L.) from a Danish embayment, Knebel Vig. J Exp Mar Biol Ecol 233:213–230CrossRefGoogle Scholar
  26. Frost BW (1974) Feeding processes at lower trophic levels in pelagic communities. In: Miller CB (ed) The biology of the oceanic Pacific. Oregon State University, Corvallis, pp 59–77Google Scholar
  27. Frost BW (1975) A threshold feeding behavior in Calanus pacificus. Limnol Oceanogr 20:263–266CrossRefGoogle Scholar
  28. Gonzalez HE (1992) The distribution and abundance of krill faecal material and oval pellets in the Scotia and Weddell Seas (Antarctica) and their role in particle flux. Polar Biol 12:81–91CrossRefGoogle Scholar
  29. Gonzalez HE, Ortiz VC, Sobarzo M (2000) The role of faecal material in the particulate organic carbon flux in the northern Humboldt Current, Chile (23°S), before and during the 1997–1998 El Niño. J Plankton Res 22:499–529CrossRefGoogle Scholar
  30. Granéli E, Granéli W, Rabbani MM, Daugbjerg N, Fransz G, Roudy JC, Alder VA (1993) The influence of copepod and krill grazing on the species composition of phytoplankton communities from the Scotia Weddell Sea. Polar Biol 13:201–213CrossRefGoogle Scholar
  31. Guillard RRL, Hargraves PE (1993) Stichocrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236CrossRefGoogle Scholar
  32. Haberman KL, Ross RM, Quetin LB (2003) Diet of the Antarctic krill (Euphausia superba Dana): II. Selective grazing in mixed phytoplankton assemblages. J Exp Marine Biol Ecol 283:97–113CrossRefGoogle Scholar
  33. Hamner WM, Hamner PP, Strand SW, Gilmer RW (1983) Behavior of Antarctic krill, Euphausia superba: chemoreception, feeding, schooling, and molting. Science 220:433–435CrossRefGoogle Scholar
  34. Hamner WM, Hamner PP, Obst BS, Carleton JH (1989) Field observations on the ontogeny of schooling of Euphausia superba furciliae and its relationship to ice in Antarctic waters. Limnol Oceanogr 34:451–456CrossRefGoogle Scholar
  35. Hansen B, Verity P, Falkenhaug T, Tande KS, Norrbin F (1994) On the trophic fate of Phaeocystis pouchetti (Harriot). V. Trophic relationships between Phaeocystis and zooplankton: an assessment of methods and size dependence. J Plankton Res 16:487–511CrossRefGoogle Scholar
  36. Hansen PJ, Bjørnsen PK, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2–2, 000-μm body size range. Limnol Oceanogr 42:687–704CrossRefGoogle Scholar
  37. Haywood GJ, Burns CW (2003) Feeding response of Nyctiphanes australis (Euphausiacea) to various nanoplankton sizes and taxa. Mar Ecol Prog Ser 253:209–216CrossRefGoogle Scholar
  38. Heide-Jørgensen MP, Simon MJ, Laidre KL (2007) Estimates of large whale abundance in Greenlandic waters from a ship-based survey in 2005. J Cetacean Res Manage 92:95–104Google Scholar
  39. Hofmann EE, Lascara CM (2000) Modeling the growth dynamics of Antarctic krill Euphausia superba. Mar Ecol Prog Ser 194:219–231CrossRefGoogle Scholar
  40. Holling CS (1959a) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. Can Entomol 31:293–320CrossRefGoogle Scholar
  41. Holling CS (1959b) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398CrossRefGoogle Scholar
  42. Hopkins CCE, Falk-Petersen S, Tande K, Eilertsen HC (1978) A preliminary study of zooplankton sound scattering layers in Balsfjorden: structure, energetics, and migrations. Sarsia 63:255–264CrossRefGoogle Scholar
  43. Huskin I, Anadón R, Álvarez-Marqués F, Harris RP (2000) Ingestion, faecal pellet and egg production rates of Calanus helgolandicus feeding coccolithophorid versus non-coccolithophorid diets. J Exp Mar Biol Ecol 248:239–254CrossRefGoogle Scholar
  44. Ikeda T, Kirkwood R (1989) Metabolism and body composition of two euphausiids (Euphausia superba and E.crystallorophias) collected from under the pack-ice off Enderby Land, Antarctica. Marine Biol 100:301–308CrossRefGoogle Scholar
  45. Ikeda T, Mitchell AW (1982) Oxygen uptake, ammonia excretion and phosphate excretion by krill and other Antarctic zooplankton in relation to their body size and chemical composition. Mar Biol 71:283–298CrossRefGoogle Scholar
  46. Jaspers C, Carstensen J (2009) Effect of acid Lugol solution as preservative on two representative chitineous and gelatinous zooplankton groups. Limnol Oceanogr Methods 7:430–435CrossRefGoogle Scholar
  47. Jensen LM, Rasch M (2008) Nuuk ecological research operations, 1st annual report 2007. Danish Polar Center, CopenhagenGoogle Scholar
  48. Jespersen AM, Christoffersen K (1987) Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Archiv für Hydrobiol 109:445–454Google Scholar
  49. Johnsson PR, Tiselius P (1990) Feeding behaviour, prey detection and capture efficincy of the copepod Acartia tonsa feeding on planktonic ciliates. Mar Ecol Prog Ser 60:35–44CrossRefGoogle Scholar
  50. Juul-Pedersen T, Nielsen TG, Michel C, Møller EF, Tiselius P, Thor P, Olesen M, Selander E, Gooding S (2006) Sedimentation following the spring bloom in Disko Bay, West Greenland, with special emphasis on the role of copepods. Mar Ecol Prog Ser 314:239–255CrossRefGoogle Scholar
  51. Kiørboe T (2008) A mechanistic approach to plankton ecology. Princeton University Press, PrincetonGoogle Scholar
  52. Kiørboe T, Møhlenberg F, Nicolajsen H (1982) Ingestion rate and gut clearance in the planktonic copepod Centropages hamatus (Lilljeborg) in relation to food concentration and temperature. Ophelia 21:181–194CrossRefGoogle Scholar
  53. Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75CrossRefGoogle Scholar
  54. Laidre KL, Heide-Jørgensen MP, Heagerty P, Cossio A, Bergström B, Simon M (2010) Spatial associations between large baleen whales and their prey in West Greenland. Mar Ecol Prog Ser 402:269–284CrossRefGoogle Scholar
  55. Levinsen H, Jefferson TT, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77CrossRefGoogle Scholar
  56. Lyck L, Taagholt J (1987) Greenland—its economy and resources. Arctic 40:50–59CrossRefGoogle Scholar
  57. Mårtensson PE, Nordoy ES, Blix AS (1994) Digestibility of krill (Euphausia superba and Thysanoessa sp.) in minke whales (Balaenoptera acutorostrata) and crabeater seals (Lobodon carcinophagus). Br J Nutr 72:713–716CrossRefGoogle Scholar
  58. Mauchline J (1960) The biology of the euphausiid crustacean, Meganyctiphanes norvegica (M. Sars). Proc Roy Soc Edinb B 67, Pt. II(9):141–179Google Scholar
  59. Mauchline J (1966) The biology of Thysanoessa raschii (M. Sars), with a comparison of its diet with that of Meganyctiphanes norvegica (M. Sars). In: Barnes H (ed) Some contemporary studies in marine sciences. George Allen and Unwin. Ltd., London, pp 493–510Google Scholar
  60. Mauchline J (1980) The biology of Euphausiids. Adv Marine Biol 18:373–623CrossRefGoogle Scholar
  61. Mauchline J, Fisher LR (1969) The biology of Euphausiids. Adv Marine Biol 7:1–454CrossRefGoogle Scholar
  62. McClatchie S (1985) Feeding behavior in Meganyctiphanes norvegica (M. Sars) (Crustacea, Euphausiacea). J Exp Marine Biol Ecol 86:271–284CrossRefGoogle Scholar
  63. McClatchie S (1986) Time-series feeding rates of the euphausiid Thysanoessa raschii in a temporally patchy food environment. Limnol Oceanogr 31:469–477CrossRefGoogle Scholar
  64. McClatchie S (1988) Functional response of the euphausiid Thysanoessa raschii grazing on small diatoms and toxic dinoflagellates. J Mar Res 46:631–646CrossRefGoogle Scholar
  65. McClatchie S, Boyd CM (1983) Morphological study of sieve efficiencies and mandibular surfaces in the Antarctic krill Euphausia superba. Can J Fish Aquat Sci 40:955–967CrossRefGoogle Scholar
  66. McQuarrie ADR, Tsai C-L (1998) Regression and time series model selection. World Scientific, SingaporeCrossRefGoogle Scholar
  67. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45:569–579CrossRefGoogle Scholar
  68. Menden-Deuer S, Lessard EJ, Satterberg J (2001) Effect of preservation on dinoflagellate and diatom cell volume and consequences for carbon biomass predictions. Mar Ecol Prog Ser 222:41–50CrossRefGoogle Scholar
  69. Merkel FR, Mosbech A, Boertmann D, Grøndahl L (2002) Winter seabird distribution and abundance off south-western Greenland, 1999. Polar Res 21:17–36CrossRefGoogle Scholar
  70. Meyer MA, El-Sayed SZ (1983) Grazing of Euphausia superba Dana on natural phytoplankton populations. Polar Biol 1:193–197CrossRefGoogle Scholar
  71. Meyer B, Auerswald L, Siegel V, Spahic S, Pape C, Fach BA, Teschke M, Lopata AL, Fuentes V (2010) Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar Ecol Prog Ser 398:1–18CrossRefGoogle Scholar
  72. Møller EF, Nielsen TG, Richardson K (2006) The zooplankton community in the Greenland Sea: Composition and role in carbon turnover. Deep Sea Res I 52:76–93CrossRefGoogle Scholar
  73. Morris DJ (1984) Filtration rates of Euphausia superba Dana: under- or overestimates? J Crustac Biol 4:185–197CrossRefGoogle Scholar
  74. Ohman MD (1984) Omnivory by Euphausia superba: the role of copepod prey. Mar Ecol Prog Ser 19:125–131CrossRefGoogle Scholar
  75. Onsrud MSR, Kaartvedt S, Rostad A, Klevjer TA (2004) Vertical distribution and feeding patterns in fish foraging on the krill Meganyctiphanes norvegica. Ices J Marine Sci 61:1278–1290CrossRefGoogle Scholar
  76. Parsons TR, LeBrasseur RJ, Fulton JD (1967) Some observations on the dependence of zooplankton grazing on the cell size and concentration of phytoplankton blooms. J Oceanogr Soc Jpn 23:10–17CrossRefGoogle Scholar
  77. Pearcy WG, Hopkins CCE, Grønvik S, Evans RA (1979) Feeding habits of cod, capelin and herring in Balsfjorden, Northern Norway, July–August 1978: the importance of Euphausiids. Sarsia 64:269–277CrossRefGoogle Scholar
  78. Perissinotto R, Pakhomov EA, McQuaid CD, Froneman PW (1997) In situ grazing rates and daily ration of Antarctic krill Euphausia superba feeding on phytoplankton at the Antarctic Polar Front and the Marginal Ice Zone. Mar Ecol Prog Ser 160:77–91CrossRefGoogle Scholar
  79. Perissinotto R, Gurney L, Pakhomov EA (2000) Contribution of heterotrophic material to diet and energy budget of Antarctic krill, Euphausia superba. Mar Biol 136:129–135CrossRefGoogle Scholar
  80. Price HJ (1989) Swimming behavior of krill in response to algal patches: a mesocosm study. Limnol Oceanogr 34:649–659CrossRefGoogle Scholar
  81. Price HJ, Boyd KR, Boyd CM (1988) Omnivorous feeding behavior of the Antarctic krill Euphausia superba. Mar Biol 97:67–77CrossRefGoogle Scholar
  82. Putt M, Stoecker DK (1989) An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coatal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  83. Ranta E, Hakala I (1978) Respiration of Mysis relicta (Crustacea, Malacostraca). Arch Hydrobiol 83:515–523Google Scholar
  84. Reigstad M, Riser CW, Svensen C (2005) Fate of copepod faecal pellets and the role of Oithona spp. Mar Ecol Prog Ser 304:265–270CrossRefGoogle Scholar
  85. Ross RM (1982) Energetics of Euphausia pacifica. I. Effects of body carbon and nitrogen and temperature on measured and predicted production. Marine Biol 68:1–13CrossRefGoogle Scholar
  86. Rysgaard S, Arendt KE, Frederiksen M, Mortensen J, Egevang C, Labansen A, Witting L, Simon M, Pedersen L, Mikkelsen DM (2008) Nuuk basic: the marine basic programme 2005–2006. In: Jensen LM, Rasch M (eds) Nuuk ecological research operations, 1st annual report 2007. Danish Polar Center, CopenhagenGoogle Scholar
  87. Satapoomin S (1999) Carbon content of some common tropical Andaman Sea copepods. J Plankton Res 21:2117–2123CrossRefGoogle Scholar
  88. Schultz M, Kiørboe T (2009) Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates. J Plankton Res 31:553–561CrossRefGoogle Scholar
  89. Small LF, Hebard JF, McIntire CD (1966) Respiration in Euphausiids. Nature 211:1210–1211CrossRefGoogle Scholar
  90. Smidt ELB (1979) Annual cycles of primary production and of zooplankton at Southwest greenland. Greenl Biosci 1:3–53Google Scholar
  91. Sorensen MC, Hipfner JM, Kyser TK, Norris DR (2010) Pre-breeding diet influences ornament size in the Rhinoceros Auklet Cerorhinca monocerata. Ibis 152:29–37CrossRefGoogle Scholar
  92. Vismann B, Hagerman L (1996) Recovery from hypoxia with and without sulfide in Saduria entomon: oxygen debt, reduced sulfur and anaerobic metabolites. Mar Ecol Prog Ser 143:131–139CrossRefGoogle Scholar
  93. Tang KW, Nielsen TG, Munk P, Mortensen J, Møller EF, Arendt KE, Tönnesson K, Pedersen TJ (under revision) Community structure and trophodynamics of mesozooplankton along a melt water influenced Greenlandic fjord. Mar Ecol Prog SerGoogle Scholar
  94. Zinabu GM, Bott TL (2000) The effects of formalin and Lugol’s iodine solution on protozoal cell volume. Limnol Ecol Manage Inland Waters 30:59–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mette Dalgaard Agersted
    • 1
    • 2
  • Torkel Gissel Nielsen
    • 1
    Email author
  • Peter Munk
    • 1
  • Bent Vismann
    • 2
  • Kristine Engel Arendt
    • 3
  1. 1.DTU Aqua, National Institute of Aquatic ResourcesSection for Ocean Ecology and ClimateCharlottenlundDenmark
  2. 2.Marine Biological LaboratoryInstitute of Biology, University of CopenhagenHelsingørDenmark
  3. 3.Greenland Climate Research Centre, c/o Greenland Institute of Natural ResourcesNuukGreenland

Personalised recommendations