Marine Biology

, Volume 156, Issue 12, pp 2461–2472 | Cite as

Recruitment and ontogenetic habitat shifts of the yellow snapper (Lutjanus argentiventris) in the Gulf of California

  • Octavio Aburto-OropezaEmail author
  • Isaí Dominguez-Guerrero
  • José Cota-Nieto
  • Tomás Plomozo-Lugo
Original Paper


We examined recruitment and ontogenetic habitat shifts of the yellow snapper Lutjanus argentiventris in the Gulf of California, by conducting surveys and collections in multiple mangrove sites and major marine coastal habitats from 1998 to 2007. Over 1,167 juvenile individuals were collected and 516 otoliths were aged to describe the temporal pattern of the settlement. L. argentiventris recruits in mangroves, where juveniles remain until they are approximately 100 mm in length or 300-days-old. Back-calculated settlement dates and underwater surveys indicated a major recruitment peak during September and October, around 8 days before and after the full moon. The majority of mangrove sites in the Gulf of California had a similar L. argentiventris average size at the beginning of the settlement season for the cohort of 2003; although there were significant differences in individual sizes at the end of the nursery stage. When sub-adults leave mangroves, they live in shallow rocky reefs and later become abundant in deeper rocky reefs. The density of migratory individuals (10–20 cm SL) decreased exponentially as the distance between a reef and a nearby mangrove site increased. This finding has important implications for local fishery regulations and coastal management plans.


Mangrove Forest Nursery Habitat Rocky Reef Mangrove Habitat Migratory Individual 



We are grateful to E. Sala for his advice and support. We also would like to thank L. Fichman, S. Hamilton, I. Mascareñas, A. Mendoza, G. Paredes, C. Sánchez, J. Samhouri, S. Sandin, and C. Viesca for their help on density data, otolith analysis and statistics. Special thanks to C. López, P. Hull, L. Levin, E. Sala, S. Sandin and five anonymous reviewers who improved previous versions of the manuscript. This study was funded by the Moore Family Foundation, the David and Lucille Packard Foundation, The Tinker Foundation, the Robins Family Foundation, The Walton Family Foundation, PADI aware project, and the Gulf of California Program of the World Wildlife Fund.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Supplementary material

227_2009_1271_MOESM1_ESM.doc (176 kb)
Supplementary material 1 (DOC 177 kb)
227_2009_1271_MOESM2_ESM.doc (52 kb)
Supplementary material 2 (DOC 52 kb)


  1. Aburto-Oropeza O (2009) The role of nursery habitats and climate variability in reef fish fisheries in the Gulf of California. PhD Thesis, Scripps Institution of Oceanography, La Jolla, CA, 106 pGoogle Scholar
  2. Aburto-Oropeza O, Balart EF (2001) Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Mar Ecol 22:283–305 Pubblicazioni Della Stazione Zoologica Di Napoli ICrossRefGoogle Scholar
  3. Aburto-Oropeza O, Sala E, Paredes G, Mendoza A, Ballesteros E (2007) Predictability of reef fish recruitment in a highly variable nursery habitat. Ecology 88:2220–2228CrossRefGoogle Scholar
  4. Aburto-Oropeza O, Ezcurra E, Danemann G, Valdéz-Ornelas V, Murray J, Sala E (2008) Mangroves in the Gulf of California increase fishery yields. Proc Natl Acad Sci 105:10456–10459CrossRefGoogle Scholar
  5. Allman RJ, Grimes CB (2002) Temporal and spatial dynamics of spawning, settlement, and growth of gray snapper (Lutjanus griseus) from the West Florida shelf as determined from otolith microstructures. Fish Bull 100:391–403Google Scholar
  6. Attrill MJ, Power M (2002) Climatic influence on a marine fish assemblage. Nature 417:275–278CrossRefGoogle Scholar
  7. Beck MW, Heck KL, Able KW, Childers DL, Eggleston DB, Gillanders BM, Halpern B, Hays CG, Hoshino K, Minello TJ, Orth RJ, Sheridan PF, Weinstein MR (2001) The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51:633–641CrossRefGoogle Scholar
  8. Biro PA, Post JR, Parkinson EA (2003) From individuals to populations: prey fish risk-taking mediates mortality in whole-system experiments. Ecology 84:2419–2431CrossRefGoogle Scholar
  9. Cocheret de la Moriniere E, Pollux BJA, Nagelkerken I, van der Velde G (2002) Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar Coast Shelf Sci 55:309–321CrossRefGoogle Scholar
  10. Coleman FC, Williams SL (2002) Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends Ecol Evol 17:40–43CrossRefGoogle Scholar
  11. Coleman FC, Koenig CC, Huntsman GR, Musick JA, Eklund AM, McGovern JC, Chapman RW, Sedberry GR, Grimes CB (2000) Long-lived reef fishes: the grouper-snapper complex. Fisheries 25:14–21CrossRefGoogle Scholar
  12. Contreras-Espinosa F, Warner BG (2004) Ecosystem characteristics and management considerations for coastal wetlands in Mexico. Hydrobiologia 511:233–245CrossRefGoogle Scholar
  13. Cruz-Romero M, Chavez EA, Espino E, Garcia A (1996) Assessment of a snapper complex (Lutjanus spp.) of the eastern tropical Pacific. In: Biology, fisheries and culture of tropical groupers and snappers. ICLARM Conference Proceedings 48, pp 324–330Google Scholar
  14. Dorenbosch M, Verweij MC, Nagelkerken I, Jiddawi N, van der Velde G (2004a) Homing and daytime tidal movements of juvenile snappers (Lutjanidae) between shallow-water nursery habitats in Zanzibar, western Indian Ocean. Environ Biol Fish 70:203–209CrossRefGoogle Scholar
  15. Dorenbosch M, van Riel MC, Nagelkerken I, van der Velde G (2004b) The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuar Coast Shelf Sci 60:37–48CrossRefGoogle Scholar
  16. Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G (2005) Indo-Pacific seagrass beds and mangroves contribute to fish density coral and diversity on adjacent reefs. Mar Ecol Prog Ser 302:63–76CrossRefGoogle Scholar
  17. Faunce CH, Serafy JE (2007) Nearshore habitat use by gray snapper (Lutjanus griseus) and bluestriped grunt (Haemulon sciurus): environmental gradients and ontogenetic shifts. Bull Mar Sci 80:473–495Google Scholar
  18. Fodrie F, Levin L (2008) Linking juvenile habitat utilization to population dynamics of California halibut. Limnol Oceanogr 53:799–812CrossRefGoogle Scholar
  19. Gillanders BM, Able KW, Brown JA, Eggleston DB, Sheridan PF (2003) Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: an important component of nurseries. Mar Ecol Prog Ser 247:281–295CrossRefGoogle Scholar
  20. González-Acosta AF, Aguero GD, Aguero JD (2004) Length-weight relationships of fish species caught in a mangrove swamp in the Gulf of California (Mexico). J Appl Ichthyol 20:154–155CrossRefGoogle Scholar
  21. Harmelin-Vivien ML, Harmelin JG, Chauvet C, Duval C, Galzin R, Lejeune P, Barnabé G, Blanc F, Chevalier R, Duclerc J, Lasserre G (1985) Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Terre Vie 40:467–539Google Scholar
  22. Koenig CC, Coleman FC (1998) Absolute abundance and survival of juvenile gags in sea grass beds of the Northeastern Gulf of Mexico. Trans Am Fish Soc 127:44–55CrossRefGoogle Scholar
  23. MacPherson E (1998) Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J Exp Mar Biol Ecol 220:127–150CrossRefGoogle Scholar
  24. Martinez-Andrade F (2003) A comparison of life histories and ecological aspects among snappers. Dissertation, Lousiana State UniversityGoogle Scholar
  25. Morris DW (2006) Ecology—moving to the ideal free home. Nature 443:645–646CrossRefGoogle Scholar
  26. Muhlia-Melo A, Guerrero-Tortolero DA, Perez-Urbiola JC, Campos-Ramos R (2003) Results of spontaneous spawning of yellow snapper (Lutjanus argentiventris peters, 1869) reared in inland ponds in La Paz, Baja California Sur, Mexico. Fish Physiol Biochem 28:511–512CrossRefGoogle Scholar
  27. Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC, Blackwell PG, Gall A, Gorczynska MI, Harborne AR, Pescod CL, Renken H, Wabnitz CCC, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536CrossRefGoogle Scholar
  28. Nagelkerken I (2007) Are non-estuarine mangroves connected to coral reefs through fish migration? Bull Mar Sci 80:595–607Google Scholar
  29. Nagelkerken I, Dorenbosch M, Verberk W, de la Moriniere EC, van der Velde G (2000) Importance of shallow-water biotopes of a Caribbean bay for juvenile coral reef fishes: patterns in biotope association, community structure and spatial distribution. Mar Ecol Prog Ser 202:175–192CrossRefGoogle Scholar
  30. Nagelkerken I, Roberts CM, van der Velde G, Dorenbosch M, van Riel MC, de la Morinere EC, Nienhuis PH (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305CrossRefGoogle Scholar
  31. Nelson PA (2001) Behavioral ecology of young-of-the-year kelp rockfish, Sebastes atrovirens Jordan and Gilbert (Pisces: Scorpaenidae). J Exp Mar Biol Ecol 256:33–50CrossRefGoogle Scholar
  32. Nixon SW, Jones CM (1997) Age and growth of larval and juvenile Atlantic croaker, Micropogonias undulatus, from the Middle Atlantic Bight and estuarine waters of Virginia. Fish Bull 95:773–784Google Scholar
  33. Ramírez-Rodríguez M, Hernández-Herrera A (2000) Pesca artesanal en la costa oriental de Baja California Sur, México (1996–1997). In: Aburto-Oropeza O, Sánchez-Ortiz CA (eds) Recursos arrecifales del Golfo de California. Universidad Autónoma de B.C.S., MéxicoGoogle Scholar
  34. Rojas PA, Gutiérrez CF, Puentes V, Villa AA, Rubio EA (2004) Aspectos de la biología y dinámica poblacional del pargo coliamarillo Lutjanus argentiventris en el Parque nacional Natural Gorgona, Colomia. Investigaciones Marinas de Valaparaíso 32:23–36Google Scholar
  35. Rooker JR, Landry AM, Geary BW, Harper JA (2004) Assessment of a shell bank and associated substrates as nursery habitat of postsettlement red snapper. Estuar Coast Shelf Sci 59:653–661CrossRefGoogle Scholar
  36. Russ GR, Lou DC, Ferreira BP (1996) Temporal tracking of a strong cohort in the population of a coral reef fish, the coral trout, Plectropomus leopardus (Serranidae: Epinephelinae), in the central Great Barrier Reef, Australia. Can J Fish Aquat Sci 53:2745–2751CrossRefGoogle Scholar
  37. Sala E, Aburto-Oropeza O, Paredes G, Parra I, Barrera JC, Dayton PK (2002) A general model for designing networks of marine reserves. Science 298:1991–1993CrossRefGoogle Scholar
  38. Sala E, Aburto-Oropeza O, Paredes G, Thompson G (2003) Spawning aggregations and reproductive behavior of reef fishes in the Gulf of California. Bull Mar Sci 72:103–121Google Scholar
  39. Secor DH (1992) Application of otolith microchemistry analysis to investigate anadromy in Chesapeake Bay striped bass Morone saxatilis. Fish Bull US 90:798–806Google Scholar
  40. Secor DH, Rooker JR (2005) Connectivity in the life histories of fishes that use estuaries. Estuar Coast Shelf Sci 64:1–3CrossRefGoogle Scholar
  41. Sheaves MJ (1996) Habitat-specific distributions of some fishes in a tropical estuary. Mar Freshw Res 47:827–830CrossRefGoogle Scholar
  42. Sheaves M (2001) Are there really few piscivorous fishes in shallow estuarine habitats? Mar Ecol Prog Ser 222:279–290CrossRefGoogle Scholar
  43. Sumpton W, Jackson S (2005) The effects of incidental trawl capture of juvenile snapper (Pagrus auratus) on yield of a sub-tropical line fishery in Australia: an assessment examining habitat preference and early life history characteristics. Fish Res 71:335–347CrossRefGoogle Scholar
  44. Thomson DA, Findley LT, Kerstitch AN (2000) Reef fishes of the Sea of Cortez. The University of Texas Press, Austin, p 353Google Scholar
  45. Wellington GM, Victor BC (1992) Regional differences in duration of the planktonic larval stage of reef fishes in the eastern Pacific-Ocean. Mar Biol 113:491–498CrossRefGoogle Scholar
  46. Whitmore RC, Brusca RC, León de la Luz J, González-Zamorano P, Mendoza-Salgado R, Amador-Silva ES, Holguin G, Galván-Magaña F, Hastings PA, Cartron JE, Felger RS, Seminoff JA, McIvor CC (2006) The ecological importance of mangroves in Baja California Sur: conservation implications for an endangered ecosystem. In: Cartron JE, Ceballos G, Felger RS (eds) Biodiversity, ecosystems, and conservation in Northern Mexico. Oxford University Press, New YorkGoogle Scholar
  47. Wilson DT, McCormick MI (1999) Microstructure of settlement-marks in the otoliths of tropical reef fishes. Mar Biol 134:29–41CrossRefGoogle Scholar
  48. Zapata FA, Herron PA (2002) Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Mar Ecol Prog Ser 230:295–300CrossRefGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Octavio Aburto-Oropeza
    • 1
    • 2
    Email author
  • Isaí Dominguez-Guerrero
    • 1
  • José Cota-Nieto
    • 1
  • Tomás Plomozo-Lugo
    • 1
  1. 1.Departamento de Biología MarinaUniversidad Autónoma de Baja California SurLa PazMexico
  2. 2.Center for Marine Biodiversity and ConservationScripps Institution of OceanographyLa JollaUSA

Personalised recommendations