Advertisement

Marine Biology

, Volume 156, Issue 9, pp 1903–1916 | Cite as

Spatial, annual and seasonal patterns in the condition and muscle size of snow crab

  • Jean-Denis Dutil
  • R. Larocque
  • S. Valois
  • E. Mayrand
  • B. Sainte-Marie
Original Paper

Abstract

The extent of spatial (depth and locality) and temporal (season and year) variabilities in condition and relative muscle size (a direct proxy of growth) were examined in male and female adult and non-adult snow crabs Chionoecetes opilio. Condition, determined from the relative size of the digestive gland and moisture content of the muscle and digestive gland, and muscle size, determined as the ratio of merus muscle mass over merus volume, separated as different processes in a principal component analysis. Snow crabs showed a wide range of condition and muscle size values. Overall, the condition was better in non-adult than in adult crabs, with adult females being in worst condition, and muscle size was larger in males than in females. Condition variability was greater for seasonal compared to annual samples, probably reflecting annual molt cycles. In contrast, the muscle size variability was greater for annual compared to seasonal samples, possibly as a result of changing crab abundance and competition intensity during recruitment pulses. Condition and muscle size increased through summer in males and immature females, although to different extents depending on instar, but did not change in adult females. Both condition and muscle size were highly variable at the investigated spatial scales. Condition and muscle size had a significant effect on gonad size, once the effect of crab size was removed, suggesting a direct link between these two parameters and reproductive capability.

Keywords

Digestive Gland Muscle Size Carapace Width Immature Female North Shore 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Several people participated in different aspects of this study in the field and in the laboratory. The authors wish to express thanks to Frédérique Bélanger, Isabelle Bérubé, Geneviève Bourget, Sébastien Champagne, Cédric Cotté, Jean-Paul Dallaire, Catherine Dion, Marc-Antoine Dion, Hélène Dionne, Réjean Dufour, Jérôme Gagnon, Guillaume Godbout, Julie Normandin, Sébastien Plante, François Tremblay, and to the crew of the C.C.G.S. Calanus II. This project was supported by the Department of Fisheries and Oceans Canada’s Environmental Science Strategic Research Fund (2000 and 2001) and Science Strategic Fund (2002–2004) programs.

References

  1. Alunno-Bruscia M, Sainte-Marie B (1998) Abdomen allometry, ovary development, and growth of female snow crab, Chionoecetes opilio (Brachyura: Majidae), in the northwestern Gulf of St. Lawrence. Can J Fish Aquat Sci 55:459–477. doi: https://doi.org/10.1139/cjfas-55-2-459 CrossRefGoogle Scholar
  2. Benhalima K, Moriyasu M, Hébert M (1998) A technique for identifying the early-premolt stage in the male snow crab Chionoecetes opilio (Brachyura: Majidae) in Baie des Chaleurs southern Gulf of St. Lawrence. Can J Zool 76:609–617. doi: https://doi.org/10.1139/cjz-76-4-609 CrossRefGoogle Scholar
  3. Brêthes J-CF, Coulombe F, Lafleur P-E, Bouchard R (1987) Habitat and spatial distribution of early benthic stages of the snow crab Chionoecetes opilio off the north shore of the Gulf of St. Lawrence. J Crustac Biol 7:667–681. doi: https://doi.org/10.2307/1548650 CrossRefGoogle Scholar
  4. Brouwer M, Brown-Peterson NJ, Larkin P, Patel V, Denslow N, Manning S, Brouwer TH (2007) Molecular and whole animal responses of grass shrimp, Palaemonetes pugio, exposed to chronic hypoxia. J Exp Mar Biol Ecol 341:16–31. doi: https://doi.org/10.1016/j.jembe.2006.10.049 CrossRefGoogle Scholar
  5. Buckup L, Dutra BK, Ribarcki FP, Fernandes FA, Noro CK, Oliveira GT, Vinagre AS (2008) Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapoda) in its natural environment. Comp Biochem Physiol A Mol Integr Physiol 149:59–67. doi: https://doi.org/10.1016/j.cbpa.2007.10.008 CrossRefGoogle Scholar
  6. Caddy JF, Wade E, Surette T, Hébert M, Moriyasu M (2005) Using an empirical traffic light procedure for monitoring and forecasting in the Gulf of St. Lawrence fishery for the snow crab, Chionoecetes opilio. Fish Res Amst 76:123–145. doi: https://doi.org/10.1016/j.fishres.2005.06.003 CrossRefGoogle Scholar
  7. Chang E (1995) Physiological and biochemical changes during the molt cycle in decapod crustaceans: an overview. J Exp Mar Biol Ecol 193:1–14. doi: https://doi.org/10.1016/0022-0981(95)00106-9 CrossRefGoogle Scholar
  8. Chen D-W, Zhang M, Shrestha S (2007) Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis). Food Chem 103:1343–1349. doi: https://doi.org/10.1016/j.foodchem.2006.10.047 CrossRefGoogle Scholar
  9. Cockcroft AC (1997) Biochemical composition as a growth predictor in male west-coast rock lobster (Jasus lalandii). Mar Freshw Res 48:845–856. doi: https://doi.org/10.1071/MF97082 CrossRefGoogle Scholar
  10. Comeau M, Conan GY (1992) Morphometry and gonad maturity of male snow crab, Chionoecetes opilio. Can J Fish Aquat Sci 49:2460–2468. doi: https://doi.org/10.1139/f92-271 CrossRefGoogle Scholar
  11. Comeau M, Conan GY, Maynou F, Robichaud G, Therriault JC, Starr M (1998) Growth, spatial distribution, and abundance of benthic stages of the snow crab (Chionoecetes opilio) in Bonne Bay, Newfoundland, Canada. Can J Fish Aquat Sci 55:262–279. doi: https://doi.org/10.1139/cjfas-55-1-262 CrossRefGoogle Scholar
  12. Conan GY, Comeau M (1986) Functional maturity and terminal molt of male snow crab, Chionoecetes opilio. Can J Fish Aquat Sci 43:1710–1719. doi: https://doi.org/10.1139/f86-293 CrossRefGoogle Scholar
  13. Conover WJ, Iman RL (1981) Rank transformation as a bridge between parametric and non parametric statistics. Am Stat 35:124–133. doi: https://doi.org/10.2307/2683975 Google Scholar
  14. Corgos A, Verisimo P, Freire J (2006) Timing and seasonality of the terminal molt and mating migration in the spider crab, Maja brachydactyla: evidence of alternative mating strategies. J Shellfish Res 25:577–587. doi: https://doi.org/10.2983/0730-8000(2006)25[577:TASOTT]2.0.CO;2 CrossRefGoogle Scholar
  15. Du Preez HH, McLachlan A (1983) Seasonal changes in biochemical composition and energy content of the three-spot swimming crab Ovalipes punctatus (Crustacea: Brachyura). J Exp Mar Biol Ecol 72:189–198. doi: https://doi.org/10.1016/0022-0981(83)90143-0 CrossRefGoogle Scholar
  16. Dutil J-D, Brander K (2003) Comparing productivity of North Atlantic cod (Gadus morhua) stocks and limits to growth production. Fish Oceanogr 12:502–512. doi: https://doi.org/10.1046/j.1365-2419.2003.00243.x CrossRefGoogle Scholar
  17. Dutil J-D, Lambert Y (2000) Natural mortality from poor condition in Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 57:826–836. doi: https://doi.org/10.1139/cjfas-57-4-826 CrossRefGoogle Scholar
  18. Dutil J-D, Munro J, Péloquin M (1997) Laboratory study of the influence of prey size on vulnerability to cannibalism in snow crab (Chionoecetes opilio). J Exp Mar Biol Ecol 212:81–94. doi: https://doi.org/10.1016/S0022-0981(96)02736-0 CrossRefGoogle Scholar
  19. Dutil J-D, Rollet C, Bouchard R, Claxton TW (2000) Shell strength and carapace size in non-adult and adult male snow crab (Chionoecetes opilio). J Crustac Biol 20:399–406. doi: https://doi.org/10.1651/0278-0372(2000)020[0399:SSACSI]2.0.CO;2 CrossRefGoogle Scholar
  20. Dutil J-D, Godbout G, Blier PU, Groman D (2006) The effect of energetic condition on growth dynamics and health of Atlantic cod (Gadus morhua). J Appl Ichthyology 22:138–144. doi: https://doi.org/10.1111/j.1439-0426.2006.00716.x CrossRefGoogle Scholar
  21. Engel DW, Brouwer M (1986) Cadmium and copper metallothioneins in the American lobster, Homarus americanus. Environ Health Perspect 65:87–92. doi: https://doi.org/10.2307/3430167 PubMedPubMedCentralGoogle Scholar
  22. Ernst B, Orensanz JM, Armstrong DA (2005) Spatial dynamics of female snow crab (Chionoecetes opilio) in the eastern Bering Sea. Can J Fish Aquat Sci 62:250–268. doi: https://doi.org/10.1139/f04-201 CrossRefGoogle Scholar
  23. Fonseca DB, Sainte-Marie B, Hazel F (2008) Longevity and change in shell condition of adult male snow crab inferred from dactyl wear and mark-recapture data. Trans Am Fish Soc 137:1029–1043. doi: https://doi.org/10.1577/T07-079.1 CrossRefGoogle Scholar
  24. Foyle TP, O’Dor RK, Elner RW (1989) Energetically defining the thermal limits of the snow crab. J Exp Biol 145:371–393Google Scholar
  25. Godbout G, Dutil J-D, Hardy D, Munro J (2002) Growth and condition of post-moult male snow crab (Chionoecetes opilio) in the laboratory. Aquaculture 206:323–340. doi: https://doi.org/10.1016/S0044-8486(01)00712-8 CrossRefGoogle Scholar
  26. Guderley H, Dutil J-D, Pelletier D (1996) The physiological status of Atlantic cod, Gadus morhua, in the wild and the laboratory: estimates of growth rates under field conditions. Can J Fish Aquat Sci 53:550–557. doi: https://doi.org/10.1139/cjfas-53-3-550 CrossRefGoogle Scholar
  27. Gunamalai V (2002) Synchronisation of molting and oogenic cycles in a continuously breeding population of the sand crab Emerita asiatica on the Madras Coast, South India. J Crustac Biol 22:398–410. doi: https://doi.org/10.1651/0278-0372(2002)022[0398:SOMAOC]2.0.CO;2 CrossRefGoogle Scholar
  28. Hardy D, Dutil J-D, Godbout G, Munro J (2000) Survival and condition of hard shell male adult snow crabs (Chionoecetes opilio) during fasting at different temperatures. Aquaculture 189:259–275. doi: https://doi.org/10.1016/S0044-8486(00)00377-X CrossRefGoogle Scholar
  29. Heath JR, Barnes H (1970) Some changes in biochemical composition with season and during the moulting cycle of the common shore crab, Carcinus maenas. J Exp Mar Biol Ecol 5:199–233. doi: https://doi.org/10.1016/0022-0981(70)90001-8 CrossRefGoogle Scholar
  30. Hébert M, Benhalima K, Miron G, Moriyasu M (2002) Moulting and growth of male snow crab, Chionoecetes opilio (Decapoda: Majidae), in the southern Gulf of St Lawrence. Crustaceana 75:671–702. doi: https://doi.org/10.1163/156854002760202679 CrossRefGoogle Scholar
  31. Huner JV, Könönen H, Henttonen P, Lindqvist OV, Jussila J (1996) Proximate analyses of freshwater crayfishes and selected tissues with emphasis on cambarids. Freshwat Crayfish 11:227–234Google Scholar
  32. Jormalainen V (1998) Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. Q Rev Biol 73:275–304. doi: https://doi.org/10.1086/420306 CrossRefGoogle Scholar
  33. Lambert Y, Dutil J-D (1997) Condition and energy reserves of Atlantic cod (Gadus morhua) during the collapse of the northern Gulf of St. Lawrence stock. Can J Fish Aquat Sci 54:2388–2400. doi: https://doi.org/10.1139/cjfas-54-10-2388 CrossRefGoogle Scholar
  34. Lambert Y, Dutil J-D (2000) Energetic consequences of reproduction in Atlantic cod (Gadus morhua) in relation to spawning level of somatic energy reserves. Can J Fish Aquat Sci 57:815–825. doi: https://doi.org/10.1139/cjfas-57-4-815 CrossRefGoogle Scholar
  35. Lovrich GA, Sainte-Marie B (1997) Cannibalism in the snow crab, Chionoecetes opilio (Brachyura: Majidae), and its potential importance to recruitment. J Exp Mar Biol Ecol 212:225–245. doi: https://doi.org/10.1016/S0022-0981(96)02715-3 CrossRefGoogle Scholar
  36. Lovrich GA, Sainte-Marie B, Smith BD (1995) Depth distribution and seasonal movements of Chionoecetes opilio (Brachyura: Majidae) in Baie Sainte-Marguerite, Gulf of Saint Lawrence. Can J Zool/Rev Can de Zool 73:1712–1726CrossRefGoogle Scholar
  37. Lovrich GA, Romero MC, Tapella F, Thatje S (2005) Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). Scientia Marina Barc 69(Suppl 2):183–193CrossRefGoogle Scholar
  38. Mallet P, Conan GY, Moriyasu M (1993) Periodicity of spawning and duration of incubation time for Chionoecetes opilio in the Gulf of St. Lawrence. ICES Council Meeting documents CM/1993:K: 26 pagesGoogle Scholar
  39. Mayrand E, Dutil J-D (2008) Physiological responses of rock crab Cancer irroratus exposed to waterborne pollutants. J Crustac Biol 28:510–518. doi: https://doi.org/10.1651/07-2897R.1 CrossRefGoogle Scholar
  40. Mayrand E, Guderley H, Dutil J-D (1998) Effect of morphometric maturity and size on enzyme activities and nucleic acid ratios in the snow crab Chionoecetes opilio. J Crustac Biol 18:232–242. doi: https://doi.org/10.2307/1549317 CrossRefGoogle Scholar
  41. Mayrand E, Dutil J-D, Guderley H (2000a) Changes in muscle of postmoult snow crabs Chionoecetes opilio fed different rations. J Exp Mar Biol Ecol 243:95–113. doi: https://doi.org/10.1016/S0022-0981(99)00115-X CrossRefGoogle Scholar
  42. Mayrand E, Guderley H, Dutil J-D (2000b) Biochemical indicators of muscle growth in the snow crab Chionoecetes opilio. J Exp Mar Biol Ecol 255:37–49. doi: https://doi.org/10.1016/S0022-0981(00)00286-0 CrossRefGoogle Scholar
  43. Moriyasu M, Lanteigne C (1998) Embryo development and reproductive cycle in the snow crab, Chionoecetes opilio (Crustacea: Majidae), in the southern Gulf of St. Lawrence, Canada. Can J Fish Aquat Sci 76:2040–2048Google Scholar
  44. Norkko J, Thrush SF (2006) Ecophysiology in environmental impact assessment: implications of spatial differences in seasonal variability of bivalve condition. Mar Ecol Prog Ser 326:175–186. doi: https://doi.org/10.3354/meps326175 CrossRefGoogle Scholar
  45. O’Halloran MJ, O’Dor RK (1988) Molt cycle of male snow crabs, Chionoecetes opilio, from observations of external features, setal changes, and feeding behavior. J Crustac Biol 8:164–176. doi: https://doi.org/10.2307/1548309 CrossRefGoogle Scholar
  46. Orensanz JM, Ernst B, Armstrong DA (2007) Variation of female size and stage at maturity in snow crab (Chionoecetes opilio) (Brachyura: Majidae) from the eastern Bering Sea. J Crustac Biol 27:576–591. doi: https://doi.org/10.1651/S-2790.1 CrossRefGoogle Scholar
  47. Paille N, Sainte-Marie B, Brêthes J-C (2002) Behavior, growth and survival of stage V lobsters (Homarus americanus) in relation to shelter availability and lobster density. Mar Freshwat Behav Physiol 35:203–219. doi: https://doi.org/10.1080/1023624021000019324 CrossRefGoogle Scholar
  48. Pillay KK, Nair NB (1973) Observations on the biochemical changes in gonads and other organs of Uca annulipes, Portunus pelagicus and Metapenaeus affinis (Decapoda: Crustacea) during the reproductive cycle. Mar Biol (Berl) 18:167–198. doi: https://doi.org/10.1007/BF00367985 CrossRefGoogle Scholar
  49. Plaistow SJ, Bollache L, Cezilly F (2003) Energetically costly precopulatory mate guarding in the amphipod Gammarus pulex: causes and consequences. Anim Behav 65:683–691. doi: https://doi.org/10.1006/anbe.2003.2116 CrossRefGoogle Scholar
  50. Potvin C, Roff D (1993) Distribution-free methods: viable alternatives to parametric statistics. Ecology 74:17–28Google Scholar
  51. Renaud L (1949) Le cycle des réserves organiques chez les crustacés décapodes. Ann Inst Oceanographique 24:259–357Google Scholar
  52. Romero MC, Lovrich GA, Tapella F (2006) Seasonal changes in dry mass and energetic content of Munida subrugosa (Crustacea: Decapoda) in the Beagle Channel, Argentina. J Shellfish Res 25:101–106. doi: https://doi.org/10.2983/0730-8000(2006)25[101:SCIDMA]2.0.CO;2 CrossRefGoogle Scholar
  53. Rosa R, Nunes ML (2003) Changes in organ indices and lipid dynamics during the reproductive cycle of Aristeus antennatus, Parapenaeus longirostris, and Nephrops norvegicus (Decapoda) from the Portuguese South Coast. Crustaceana 75:1095–1105. doi: https://doi.org/10.1163/156854002763270491 CrossRefGoogle Scholar
  54. Sainte-Marie B (1993) Reproductive cycle and fecundity of primiparous and multiparous female snow crab, Chionoecetes opilio, in the northwest Gulf of St. Lawrence. Can J Fish Aquat Sci 50:2147–2156. doi: https://doi.org/10.1139/f93-240 CrossRefGoogle Scholar
  55. Sainte-Marie B (1997) Comment—an improved link between industry, management and science: review of case history of the southwestern Gulf of St. Lawrence snow crab fishery. Can J Fish Aquat Sci 54:496–500. doi: https://doi.org/10.1139/cjfas-54-2-496 Google Scholar
  56. Sainte-Marie B, Hazel F (1992) Moulting and mating of snow crabs, Chionoecetes opilio, in shallow waters of the northwestern Gulf of St. Lawrence. Can J Fish Aquat Sci 49:1282–1293. doi: https://doi.org/10.1139/f92-144 CrossRefGoogle Scholar
  57. Sainte-Marie B, Lafrance M (2002) Growth and survival of recently settled snow crab Chionoecetes opilio in relation to intra- and intercohort competition and cannibalism: a laboratory study. Mar Ecol Prog Ser 244:191–203. doi: https://doi.org/10.3354/meps244191 CrossRefGoogle Scholar
  58. Sainte-Marie G, Sainte-Marie B (1998) Morphology of the spermatheca, oviduct, intermediate chamber, and vagina of the adult snow crab (Chionoecetes opilio). Can J Zool 76:1589–1604. doi: https://doi.org/10.1139/cjz-76-8-1589 CrossRefGoogle Scholar
  59. Sainte-Marie B, Raymond S, Brêthes J-C (1995) Growth and maturation of the benthic stages of male snow crab, Chionoecetes opilio (Brachyura: Majidae). Can J Fish Aquat Sci 52:903–924. doi: https://doi.org/10.1139/f95-091 CrossRefGoogle Scholar
  60. Sainte-Marie B, Gosselin T, Sévigny J-M, Urbani N (2008) The snow crab mating system: opportunity for natural and unnatural selection in a changing environment. Bull Mar Sci 83:131–161Google Scholar
  61. Schwalme K, Chouinard GA (1999) Seasonal dynamics in feeding, organ weights, and reproductive maturation of Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. ICES J Mar Sci 56:303–319. doi: https://doi.org/10.1006/jmsc.1999.0458 CrossRefGoogle Scholar
  62. Sinha RC, Ahmed HK (1978) Some changes in biochemical composition with sex and size of the crab, Sesarma boulangeri. Hydrobiologia 61:15–19. doi: https://doi.org/10.1007/BF00019020 CrossRefGoogle Scholar
  63. Sparkes TC, Keogh DP, Pary RA (1996) Energetic costs of mate guarding behavior in male stream-dwelling isopods. Oecologia 106:166–171. doi: https://doi.org/10.1007/BF00328595 CrossRefGoogle Scholar
  64. Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Assoc 69:730–737. doi: https://doi.org/10.2307/2286009 CrossRefGoogle Scholar
  65. Taylor DM, Hooper RG, Ennis GP (1985) Biological aspects of the spring breeding migration of snow crabs, Chionoecetes opilio, in Bonne Bay, Newfoundland (Canada). Fish Bull (Wash DC) 83:707–711Google Scholar
  66. Taylor DM, Marshall GW, O’Keefe PG (1989) Shell hardening in snow crabs Chionoecetes opilio tagged in soft-shelled condition. N Am J Fish Manage 9:504–508. doi: https://doi.org/10.1577/1548-8675(1989)009<0504:SHISCC>2.3.CO;2 CrossRefGoogle Scholar
  67. Vinagre AS, do Amaral AP, Ribarcki FP, da Silveira EF, Perico E (2007) Seasonal variation of energy metabolism in ghost crab Ocypode quadrata at Siriu Beach (Brazil). Comp Biochem Physiol A Mol Integr Physiol 146:514–519. doi: https://doi.org/10.1016/j.cbpa.2006.02.004 CrossRefGoogle Scholar
  68. Warner GF (1977) The biology of crabs. Elek Science, LondonGoogle Scholar
  69. Watson J (1971) Ecdysis of the snow crab, Chionoecetes opilio. Can J Zool 49:1025–1027. doi: https://doi.org/10.1139/z71-157 CrossRefGoogle Scholar
  70. Wen X, Chen L, Ai C, Zhou Z, Jiang H (2001) Variation in lipid composition of Chinese mitten-handed crab, Eriocheir sinensis, during ovarian maturation. Comp Biochem Physiol B Biochem Mol Biol 130:95–104. doi: https://doi.org/10.1016/S1096-4959(01)00411-0 CrossRefGoogle Scholar
  71. Wendelaar Bonga SE, Balm PHM (1999) Histological and histopathological effects of stress. In: Balm PHM (ed) Stress physiology in animals. CRC Press, Boca Raton, pp 178–204Google Scholar
  72. Wu X, Cheng Y, Sui L, Yang X, Nan T, Wang J (2007) Biochemical composition of pond-reared and lake-stocked Chinese mitten crab Eriocheir sinensis broodstock. Aquacult Res 38:1459–1467. doi: https://doi.org/10.1111/j.1365-2109.2007.01728.x CrossRefGoogle Scholar
  73. Yamaguchi T (2001) Seasonal changes of the hepatopancreas index in the males of the fiddler crab, Uca lactea. Crustaceana 74:627–634. doi: https://doi.org/10.1163/156854001750377902 CrossRefGoogle Scholar
  74. Yamaguchi T (2004) Seasonal changes in the energy content of females of the fiddler crab, Uca lactea, especially during the reproductive period. Crustaceana 76:1371–1397. doi: https://doi.org/10.1163/156854003323009867 CrossRefGoogle Scholar
  75. Yoshida H (1941) On the reproduction of useful crabs in North Korea. Suisan Kenkyushi 36:116–123Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2009

Authors and Affiliations

  • Jean-Denis Dutil
    • 1
  • R. Larocque
    • 1
  • S. Valois
    • 1
  • E. Mayrand
    • 1
  • B. Sainte-Marie
    • 1
  1. 1.Pêches et Océans Canada, Institut Maurice-LamontagneMont-JoliCanada

Personalised recommendations