Advertisement

Marine Biology

, Volume 156, Issue 9, pp 1963–1976 | Cite as

Evaluation of the 18S rRNA clone library approach to study the diversity of the macroeukaryotic leaf-epiphytic community of the seagrass Posidonia oceanica (L.) Delile

  • F. J. Medina-Pons
  • J. Terrados
  • A. López-López
  • P. Yarza
  • R. Rosselló-Móra
Method

Abstract

The sequence comparisons among genes codifying for the RNA component of the small ribosomal subunit (16S rRNA or 18S rRNA) in cellular organisms have been largely used to reconstruct their phylogenies, and hence the identification of taxa by means of a molecular approach. Furthermore, the direct DNA isolation from environmental samples and the PCR amplification of the pool of rRNA genes with the subsequent cloning and sequencing have opened the door to the description of naturally occurring microbial communities independently from any culturing technique or morphological identification. These studies have unveiled an enormous hidden diversity in a wide variety of microbial communities. Our main objective was to evaluate the usefulness of the 18S rRNA gene clone libraries to describe the structure of the macroeukaryotic leaf-epiphytic assemblage of the seagrass Posidonia oceanica, and monitor the changes occurring in different stages of its seasonal succession (winter, spring and summer). To that end, we compared the results of these libraries with those provided by classical microscopy techniques. Among both approaches, the screening of clone libraries rendered the highest number of distinct units named operational phylogenetic units. However, diversity estimates provided by both methods were comparable and rendered the highest Shannon Diversity Index (H′) at the end of the succession. The major discrepancies were on the different occurrence of some groups. For example, macroalgae were the most frequent epiphytes counted by microscopy, whereas metazoa (specially, bryozoa) dominated the clone libraries. Altogether the results indicate that clone libraries constitute an excellent complementary approach to classical microscopy methods. To the best of our knowledge, this is the first attempt to describe a marine macroeukaryotic community using a molecular approach such as the analysis of 18S rRNA gene clone libraries.

Keywords

Macroalgae Clone Library Rhodophyta Polymerase Chain Reaction Program Epiphytic Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Marine Microbiology Group and the Marine Macrophyte Ecology Group from IMEDEA for facilities and help with the field and lab work. This study was funded by the Government of the Balearic Islands (Acció Especial de recerca, desenvolupament tecnològic i innovació (2006) and the UGIZC research contract), the Spanish Ministry of Education and Science (Acción Complementaria CTM2005-23775-E) and the Spanish Ministry of Science and Innovation (research projects CLG2006-12714-C02-02 and Consolider-Ingenio 2010 CE-CSD2007-0005). F.J.M.P thanks ‘Conselleria de Economia, Hisenda i Innovació’ of Balearic Government for a PhD grant (FPI05) that supported this work. All experiments done in this study comply with the current laws of Spain.

References

  1. Antolic B (1986) Epiphytic flora on leaves of Posidonia oceanica (L.) Delile from the area of Dubrovnik (South Adriatic). Acta Adriat 27(1–2):37–49Google Scholar
  2. Ballesteros E (1987) Estructura i dinàmica del poblament algal de les fulles de Posidonia oceanica (L.) Delile als herbeis de Tossa de Mar (Girona). Bullt Inst Cat Hist Nat 54(Sec Bot 6):13–30Google Scholar
  3. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004) GenBank: update. Nucleic Acids Res 32:23–26. doi: https://doi.org/10.1093/nar/gkh045 CrossRefGoogle Scholar
  4. Borowitzka MA, Lavery PS, Van Keulen M (2006) Epiphytes of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 441–461Google Scholar
  5. Brower JE, Zar JH (eds) (1984) Field and laboratory methods for general ecology, 2nd edn. W.C. Brown Publishers, DubuqueGoogle Scholar
  6. Buia MC, Cormaci M, Furnari G, Mazzella L (1989) Posidonia oceanica off Capo Passero (Sicily, Italy): leaf phenology and leaf algal epiphytic community. In: Boudouresque CF, Meinesz A, Fresi E, Gravez V (eds) Second international workshop on Posidonia oceanica Beds. GIS Posidonie Publication, Porquerolles, pp 127–143Google Scholar
  7. Casola E, Scardi M, Mazzella L, Fresi E (1987) Structure of the epiphytic community of Posidonia oceanica leaves in a shallow meadow. PSZNI Mar Ecol 8(4):285–296. doi: https://doi.org/10.1111/j.1439-0485.1987.tb00189.x CrossRefGoogle Scholar
  8. Cinelli F, Cormaci M, Furnari G, Mazzella L (1984) Epiphytic macroflora of Posidonia oceanica (L.) Delile leaves around the island of Ischia (Gulf of Naples). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) First international workshop on Posidonia oceanica Beds. GIS Posidonie Publication, Marseille, pp 91–99Google Scholar
  9. Colognola R, Gambi MC, Chessa LA (1984) Polychaetes of the Posidonia oceanica (L.) Delile foliar substratum: comparative observations. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) First international workshop on Posidonia oceanica Beds. GIS Posidonie Publication, Marseille, pp 101–108Google Scholar
  10. DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689. doi: https://doi.org/10.1073/pnas.89.12.5685 CrossRefGoogle Scholar
  11. Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67(7):2932–2941. doi: https://doi.org/10.1128/AEM.67.7.2932-2941.2001 CrossRefGoogle Scholar
  12. Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485. doi: https://doi.org/10.1534/genetics.107.071399 CrossRefGoogle Scholar
  13. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63. doi: https://doi.org/10.1038/345060a0 CrossRefGoogle Scholar
  14. Guiry MD, Guiry GM (2009) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org
  15. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35(1):1–21. doi: https://doi.org/10.1007/s002489900056 CrossRefGoogle Scholar
  16. Hofrichter R (ed) (2005) El Mar Mediterráneo. Fauna-Flora-Ecología. Vol. II/1 Guía sistemática y de identificación. Ediciones Omega, BarcelonaGoogle Scholar
  17. Hong YK, Sohn CH, Lee KW, Kim HG (1997) Nucleic acid extraction from seaweed tissues for polymerase chain reaction. J Mar Biotechnol 5(2–3):95–99Google Scholar
  18. Kocak F, Balduzzi A, Avni Benli H (2002) Epiphytic bryozoan of Posidonia oceanica (L.) Delile meadow in the northern Cyprus (Eastern Mediterranean). Indian J Mar Sci 31(3):235–238Google Scholar
  19. Lepoint G, Jacquemart J, Bouquegneau JM, Demoulin V, Gobert S (2007) Field measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia oceanica (Monocotyledons, Posidoniaceae). J Phycol 43:208–218. doi: https://doi.org/10.1111/j.1529-8817.2007.00322.x CrossRefGoogle Scholar
  20. López-García P, Rodriguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607. doi: https://doi.org/10.1038/35054537 CrossRefGoogle Scholar
  21. Ludwig W, Strunk O, Westram R, Richter L, Meier H Yadhukumar, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. doi: https://doi.org/10.1093/nar/gkh293. http://www.arbhome.de/ CrossRefGoogle Scholar
  22. Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community in Sulfide-Rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71(10):6175–6184. doi: https://doi.org/10.1128/AEM.71.10.6175-6184.2005 CrossRefGoogle Scholar
  23. Magurran AE (ed) (1989) Diversidad ecológica y su medición. Ediciones Vedrá, BarcelonaGoogle Scholar
  24. Massana R, Guillou L, Diez B, Pedros-Alio C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68(9):4554–4558. doi: https://doi.org/10.1128/AEM.68.9.4554-4558.2002 CrossRefGoogle Scholar
  25. Mazzella L, Scipione MB, Buia MC (1989) Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. Mar Ecol Evol Perspect 10:107–129. doi: https://doi.org/10.1111/j.1439-0485.1989.tb00069.x CrossRefGoogle Scholar
  26. Medina-Pons FJ, Terrados J, Rosselló-Móra R (2008) Application of temperature gradient gel electrophoresis technique to monitor changes in the structure of the eukaryotic leaf-epiphytic community of Posidonia oceanica. Mar Biol (Berl) 155:451–460. doi: https://doi.org/10.1007/s00227-008-1037-5 CrossRefGoogle Scholar
  27. Ott JA (1980) Growth and production in Posidonia oceanica (L.) Delile. PSZNI Mar Ecol 1:47–64. doi: https://doi.org/10.1111/j.1439-0485.1980.tb00221.x CrossRefGoogle Scholar
  28. Panayotidis P, Boudouresque CF (1981) Végétation marine de l’Ile de Port-Cros (Parc National) XXI. Aire minimale et patchiness de la flore épiphyte des feuilles de Posidonia oceanica. Trav Sci Parc Nation Port-Cros 7:71–84Google Scholar
  29. Pergent G, Pergent-Martini C (1993) Leaf renewal cycle of Posidonia oceanica in the bay of Lacco Ameno (Ischia, Italy) using lepidochronological method. Posidonia Newsl 4(2):11–20Google Scholar
  30. Procaccini G, Buia MC, Gambi MC, Pérez M, Pergent G, Pergent-Martini C, Romero J (2003) The seagrasses of the Western Mediterranean. In: Green EP, Short FT (eds) World Atlas of Seagrasses. UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, pp 48–58Google Scholar
  31. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. doi: https://doi.org/10.1093/nar/gkm864 CrossRefGoogle Scholar
  32. Romari K, Vaulot D (2004) Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18S rDNA sequences. Limnol Oceanogr 49(3):784–798CrossRefGoogle Scholar
  33. Romero J (1988) Epífitos de las hojas de Posidonia oceanica: variaciones estacionales y batimétricas de biomasa en la pradera de las islas Medes (Girona). Oecol Aquat 9:19–25Google Scholar
  34. Rosselló-Móra R, López-López A (2008) The least common denominator: species or operational taxonomic units? In: Zengler K (ed) Accessing uncultivated microorganisms. From the environment to organisms and genomes and back. ASM press, Washington, pp 117–130Google Scholar
  35. Russo GF, Fresi E, Vinci D, Chessa LA (1984) Mollusk syntaxon of foliar stratum along a depth gradient in Posidonia oceanica (L.) Delile meadow: seasonal variability. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) First international workshop on Posidonia oceanica Beds. GIS Posidonie Publications, Marseille, pp 311–318Google Scholar
  36. Sambrook J, Russell DW (2001) In vitro amplification of DNA by PCR. Molecular cloning: a laboratory manual. Third edition. Vol. II, Chapter 3, Sect. 8.1. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  37. Sequencher v 4.7 (2006) Gene Codes Corporation, Ann Arbor, Michigan. http://www.sequencher.com
  38. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: https://doi.org/10.1093/bioinformatics/btl446 CrossRefGoogle Scholar
  39. Van de Peer Y, Neefs JM, De Rijk P, De Wachter R (1993) Evolution of eukaryotes as deduced from small ribosomal subunit RNA sequences. Biochem Syst Ecol 21(1):43–55. doi: https://doi.org/10.1016/0305-1978(93)90008-F CrossRefGoogle Scholar
  40. Van der Ben D (1971) Les épiphytes des feuilles de Posidonia oceanica Delile sur les côtes françaises de la Méditerranée. Mem Inst R Sci Nat Belg 168:1–101Google Scholar
  41. Vidal R, Meneses I, Smith M (2002) Enhanced DNA extraction and PCR amplification of SSU ribosomal genes from crustose coralline algae. J Appl Phycol 14(3):223–227. doi: https://doi.org/10.1023/A:1019975409640 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • F. J. Medina-Pons
    • 1
  • J. Terrados
    • 1
  • A. López-López
    • 2
  • P. Yarza
    • 2
  • R. Rosselló-Móra
    • 2
  1. 1.Marine Macrophyte Ecology Group, Ecology and Marine Resources DepartmentIMEDEA (CSIC-UIB)Esporles, MajorcaSpain
  2. 2.Marine Microbiology Group, Ecology and Marine Resources DepartmentIMEDEA (CSIC-UIB)Esporles, MajorcaSpain

Personalised recommendations