Advertisement

Marine Biology

, Volume 156, Issue 9, pp 1809–1816 | Cite as

Do activity costs determine foraging tactics for an arctic seabird?

  • Kyle H. Elliott
  • Kerry J. Woo
  • Silvano Benvenuti
Original Paper

Abstract

How energy costs affect foraging decisions is poorly understood for marine animals. To provide data relevant to this topic, we examined the relationship between activity levels and foraging behavior by attaching activity recorders to 29 chick-rearing wing-propelled diving birds (thick-billed murres, Uria lomvia) in 1999–2000. We connected the activity during the final dive bout with the prey item we observed being fed to the chicks. After accounting for changes in activity level with depth, activity was highest during the final dive of a dive bout, reflecting maneuvring during prey capture. Pelagic prey items, especially invertebrates (amphipods), were associated with higher depth-corrected activity, leading to shorter dives for a given depth (presumably due to higher oxygen consumption rates) and, thus, shorter search times (lower bottom time for a given depth). Pelagic prey items were likely captured during active pursuit, with the birds actively seeking and pursuing schooling mid-water prey. In contrast, benthic prey involved low activity and extended search times, suggesting that the birds slowly glided along the bottom in search for prey hidden in the sediments or rocks. We concluded that activity levels are important in determining the foraging tactics of marine predators.

Keywords

Prey Item Prey Type Bottom Phase Dive Depth Dive Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank R. Bull, T. Lash, D. Martin, P. Smith, U. Steiner and L. Wilson for help in the field. J. Nakoolak kept us safe from bears. K·H.E. benefited from funding provided by NSERC Postgraduate (M) Award, NSERC Northern Research Internship, Andrew Taylor Northern Studies Award, Malcolm Ramsay Award, Mountain Equipment Co-op Studentship, Arctic Institute of North America Grant-in-aid, Frank M. Chapman Memorial Fund, International Polar Year and Society of Canadian Ornithologists/Bird Studies Canada Taverner Award. K.H.E. and K.J.W. benefited from Northern Scientific Training Program of the Department of Indian Affairs and Northern Development during the field stage and funding from the 2007–2008 International Polar Year during the writing stage. The University of Pisa and Ministero della Ricerca Scientifica e Tecnologica provided funding for S.B. The Canadian Wildlife Service Migratory Birds Division, the Polar Continental Shelf Project and the University of Manitoba also funded this project. R. Armstrong at the Nunavut Research Institute and C. Eberl at the Canadian Wildlife Service in Ottawa provided logistical support. All experiments were approved under the guidelines of the Canadian Council for Animal Care.

Supplementary material

227_2009_1214_MOESM1_ESM.jpg (54 kb)
Supplementary material 1 Dive bout activity prior to delivery of Triglops sculpin (JPG 53 kb)
227_2009_1214_MOESM2_ESM.jpg (68 kb)
Supplementary material 2 Dive bout activity prior to delivery of cod (JPG 67 kb)
227_2009_1214_MOESM3_ESM.jpg (91 kb)
Supplementary material 3 Dive bout activity prior to delivery of Gymnelus (JPG 90 kb)
227_2009_1214_MOESM4_ESM.jpg (85 kb)
Supplementary material 4 Dive bout activity prior to delivery of capelin (JPG 85 kb)
227_2009_1214_MOESM5_ESM.jpg (54 kb)
Supplementary material 5 Dive bout activity prior to delivery of amphipod (JPG 53 kb)
227_2009_1214_MOESM6_ESM.jpg (81 kb)
Supplementary material 6 Dive bout activity prior to delivery of sandlance (JPG 81 kb)
227_2009_1214_MOESM7_ESM.jpg (82 kb)
Supplementary material 7 Dive bout activity prior to delivery of sandlance (JPG 82 kb)
227_2009_1214_MOESM8_ESM.jpg (339 kb)
Supplementary material 8 How we identified prey type (adult murre feeding chick) (JPG 339 kb)

References

  1. Baird PH (1991) Optimal foraging and intraspecific competition in the tufted puffin. Condor 93:503–515. doi: https://doi.org/10.2307/1368182 CrossRefGoogle Scholar
  2. Bannasch R, Wilson RP, Culik B (1994) Hydrodynamic aspects of design and attachment of back-mounted devices in penguins. J Exp Biol 194:83–96Google Scholar
  3. Benvenuti S, Bonadonna F, Dall’Antonia L, Gudmundsson GA (1998) Foraging flights of breeding thick-billed murres (Uria lomvia) as revealed by bird-borne direction recorders. Auk 115:57–66CrossRefGoogle Scholar
  4. Benvenuti S, Dall’Antonia L, Falk K (2002) Diving behaviour differs between incubating and brooding Brünnich’s guillemots, Uria lomvia. Polar Biol 25:474–478Google Scholar
  5. Bost CA, Handrich Y, Butler PJ, Fahlman A, Halsey LG, Woakes AJ, Ropert-Coudert Y (2007) Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep Sea Res Part II Top Stud Oceanogr 54:248–255. doi: https://doi.org/10.1016/j.dsr2.2006.11.007 CrossRefGoogle Scholar
  6. Burger AE, Wilson RP, Garnier D, Wilson MPT (1993) Diving depths, diet, and underwater foraging of rhinoceros auklets in British Columbia. Can J Zool 71:2528–2540. doi: https://doi.org/10.1139/z93-346 CrossRefGoogle Scholar
  7. Cook TR, Bailleul F, Lescroël A, Tremblay Y, Bost CA (2008) Crossing the frontier: vertical transit rates of deep diving cormorants reveal depth zone of neutral buoyancy. Mar Biol (Berl) 154:383–391. doi: https://doi.org/10.1007/s00227-008-0939-6 CrossRefGoogle Scholar
  8. Croll DA, Gaston AJ, Burger AE, Konnoff D (1992) Foraging behaviour and physiological adaptation for diving in thick-billed murres. Ecology 73:344–356. doi: https://doi.org/10.2307/1938746 CrossRefGoogle Scholar
  9. Davoren GK, Montevecchi WA, Anderson JT (2003) Search strategies of a pursuit-diving marine bird and the persistence of prey patches. Ecol Monogr 73:463–481. doi: https://doi.org/10.1890/02-0208 CrossRefGoogle Scholar
  10. Davoren GK, Anderson JT, Montevecchi WA (2006) Shoal behaviour and maturity relations of spawning capelin (Mallotus villosus) off Newfoundland: demersal spawning and diel vertical movement patterns. Can J Fish Aquat Sci 63:268–284. doi: https://doi.org/10.1139/f05-204 CrossRefGoogle Scholar
  11. Deagle BE, Gales NJ, Hindell MA (2008) Variability in foraging behaviour of chick-rearing macaroni penguins Eudyptes chrysolophus and its relation to diet. Mar Ecol Prog Ser 359:295–309. doi: https://doi.org/10.3354/meps07307 CrossRefGoogle Scholar
  12. Elliott KH, Gaston AJ (2008) Energy density and mass–length relationships for fish collected from thick-billed murre (Uria lomvia) ledges in the Canadian Arctic 1981–2007. Mar Ornithol 36:25–34Google Scholar
  13. Elliott KH, Gaston AJ, Davoren GK (2007) Influence of buoyancy and drag on the dive behaviour of an Arctic seabird, the thick-billed murre. Can J Zool 85:352–361. doi: https://doi.org/10.1139/Z07-012 CrossRefGoogle Scholar
  14. Elliott KH, Gaston AJ, Davoren GK (2008a) Time allocation by a deep-diving bird reflects energy expenditure. Anim Behav 75:1311–1317. doi: https://doi.org/10.1016/j.anbehav.2007.10.026 CrossRefGoogle Scholar
  15. Elliott KH, Gaston AJ, Davoren GK (2008b) Time allocation by a deep-diving bird reflects energy gain and prey type. Anim Behav 75:1301–1310. doi: https://doi.org/10.1016/j.anbehav.2007.09.024 CrossRefGoogle Scholar
  16. Elliott KH, Woo K, Gaston AJ, Benvenuti S, Dall’Antonia L, Davoren GK (2008c) Seabird foraging behaviour indicates prey type. Mar Ecol Prog Ser 354:289–303. doi: https://doi.org/10.3354/meps07221 CrossRefGoogle Scholar
  17. Elliott KH, Davoren GK, Gaston AJ (2008d) Sources of bias in murre feeding watches. J Field Ornithol 79:298–307. doi: https://doi.org/10.1111/j.1557-9263.2008.00177.x CrossRefGoogle Scholar
  18. Elliott KH, Woo K, Gaston AJ, Benvenuti S, Dall’Antonia L, Davoren GK (2009) Central-place foraging by an arctic seabird provides evidence for Storer-Ashmole’s halo. Auk (in press)Google Scholar
  19. Enstipp MR, Grémillet D, Jones DR (2006) The effects of depth, temperature and food ingestion on the foraging energetics of a diving endotherm, the double-crested cormorant (Phalacrocorax auritus). J Exp Biol 209:845–859. doi: https://doi.org/10.1242/jeb.02064 CrossRefGoogle Scholar
  20. Enstipp MR, Grémillet D, Jones DR (2007) Investigating the functional link between prey abundance and seabird predatory performance. Mar Ecol Prog Ser 331:267–279. doi: https://doi.org/10.3354/meps331267 CrossRefGoogle Scholar
  21. Estes JA, Riedman ML, Staedler MM, Tinker MT, Lyon BE (2003) Individual variation in prey selection by sea otters: patterns, causes and implications. J Anim Ecol 72:144–155. doi: https://doi.org/10.1046/j.1365-2656.2003.00690.x CrossRefGoogle Scholar
  22. Falk K, Benvenuti S, Dall’Antonia L, Kampp K, Ribolini A (2000) Time allocation and foraging behaviour of chick-rearing Brünnich’s guillemot Uria lomvia in high arctic Greenland. Ibis 142:82–92. doi: https://doi.org/10.1111/j.1474-919X.2000.tb07687.x CrossRefGoogle Scholar
  23. Falk K, Benvenuti S, Dall’Antonia L, Gilchrist G, Kampp K (2002) Foraging behaviour of thick-billed murres breeding in different sectors of the North Water polynya: an inter-colony comparison. Mar Ecol Prog Ser 231:293–302. doi: https://doi.org/10.3354/meps231293 CrossRefGoogle Scholar
  24. Garthe S, Benvenuti S, Montevecchi WA (2000) Pursuit plunging by northern gannets (Sula bassana) feeding on capelin (Mallotus villosus). Proc R Soc Lond B Biol Sci 267:1717–1722. doi: https://doi.org/10.1098/rspb.2000.1200 CrossRefGoogle Scholar
  25. Gaston AJ (2004) Seabirds—a natural history. Black, LondonGoogle Scholar
  26. Gaston AJ, Bradstreet MSW (1993) Intercolony differences in the summer diet of thick-billed murres in the eastern Canadian Arctic. Can J Zool 71:1831–1840. doi: https://doi.org/10.1139/z93-261 CrossRefGoogle Scholar
  27. Gaston AJ, Woo K, Hipfner JM (2003) Trends in forage fish populations in northern Hudson Bay since 1981: as determined from the diet of nestling thick-billed murres Uria lomvia. Arctic 56:227–233CrossRefGoogle Scholar
  28. Gaston AJ, Gilchrist HG, Hipfner JM (2005a) Climate change, ice conditions and reproduction in an Arctic nesting marine bird: Brünnich’s guillemot (Uria lomvia L.). J Anim Ecol 74:832–841. doi: https://doi.org/10.1111/j.1365-2656.2005.00982.x CrossRefGoogle Scholar
  29. Gaston AJ, Gilchrist HG, Mallory ML (2005b) Variation in ice conditions has strong effects on the breeding of marine birds at Prince Leopold Island, Nunavut. Ecography 28:331–344. doi: https://doi.org/10.1111/j.0906-7590.2005.04179.x CrossRefGoogle Scholar
  30. Halsey LG, White CR, Enstipp MR, Jones DR, Martin GR, Butler PJ (2007) When cormorants go fishing: the differing cost of hunting for sedentary and motile prey. Biol Lett 3:574–576. doi: https://doi.org/10.1098/rsbl.2007.0121 CrossRefGoogle Scholar
  31. Hamel NJ, Parrish JK, Conquest LL (2004) Effects of tagging on behavior, provisioning, and reproduction in the common murre (Uria aalge), a diving seabird. Auk 121:1161–1171. doi: https://doi.org/10.1642/0004-8038(2004)121[1161:EOTOBP]2.0.CO;2 CrossRefGoogle Scholar
  32. Hedd AP, Regular PM, Montevecchi WA, Buren AD, Burke CM, Fifield DA (2009) Going deep: common murres dive into frigid water for aggregated, persistent, slow-moving capelin. Mar Biol (Berl) 156:741–751. doi: https://doi.org/10.1007/s00227-008-1125-6 CrossRefGoogle Scholar
  33. Hipfner JM, Gaston AJ, Herzberg GR, Brosnan JT, Storey AE (2003) Egg composition in relation to female age and relaying: constraints on egg production in thick-billed murres (Uria lomvia). Auk 120:645–657. doi: https://doi.org/10.1642/0004-8038(2003)120[0645:ECIRTF]2.0.CO;2 CrossRefGoogle Scholar
  34. Hipfner JM, Gaston AJ, Smith BD (2006) Regulation of provisioning rate in the thick-billed murre (Uria lomvia). Can J Zool 84:931–938. doi: https://doi.org/10.1139/Z06-066 CrossRefGoogle Scholar
  35. Houston AI, Carbone C (1992) The optimal allocation of time during the diving cycle. Behav Ecol 3:255–265. doi: https://doi.org/10.1093/beheco/3.3.255 CrossRefGoogle Scholar
  36. Jones IL, Fraser GS, Rowe S, Carr X, Taylor P (2002) Different patterns of parental effort during chick-rearing by female and male thick-billed murres (Uria lomvia) at a low Arctic colony. Auk 119:1064–1074. doi: https://doi.org/10.1642/0004-8038(2002)119[1064:DPOPED]2.0.CO;2 CrossRefGoogle Scholar
  37. Kato A, Ropert-Coudert Y, Grémillet D, Cannell B (2006) Locomotion and foraging strategy of foot-propelled and wing-propelled shallow-diving seabirds. Mar Ecol Prog Ser 308:293–301. doi: https://doi.org/10.3354/meps308293 CrossRefGoogle Scholar
  38. Litzow MA, Piatt JF, Abookire AA, Robards MD (2004) Energy density and variability in abundance of pigeon guillemot prey: support for the quality-variability trade-off hypothesis. J Avian Ecol 73:1149–1156. doi: https://doi.org/10.1111/j.0021-8790.2004.00890.x CrossRefGoogle Scholar
  39. Lovvorn JR, Croll DA, Liggins GA (1999) Mechanical versus physiological determinants of swimming speeds in diving Brünnich’s guillemots. J Exp Biol 202:1741–1752PubMedGoogle Scholar
  40. Lovvorn JR, Watanuki Y, Kato A, Naito Y, Liggins GA (2004) Stroke patterns and regulation of swim speed and energy cost in free-ranging Brünnich’s guillemots. J Exp Biol 207:4679–4695. doi: https://doi.org/10.1242/jeb.01331 CrossRefGoogle Scholar
  41. Morelle R (2009) Hungry whales steal birds dinner. http://news.bbc.co.uk/2/hi/science/nature/7940396.stm. Accessed 15 April 2009
  42. Mori Y, Yoda K, Sato K (2001) Defining dive bouts using a sequential differences analysis. Behav 138:1451–1466. doi: https://doi.org/10.1163/156853901317367690 CrossRefGoogle Scholar
  43. Mori Y, Takahashi A, Mehlum F, Watanuki Y (2002) An application of optimal diving models to diving behaviour of Brünnich’s guillemots. Anim Behav 64:739–745. doi: https://doi.org/10.1006/anbe.2002.3093 CrossRefGoogle Scholar
  44. Niizuma Y, Gabrielsen GW, Sato K, Watanuki Y, Naito Y (2007) Brünnich’s guillemots (Uria lomvia) maintain high temperatures in the body core during dives. Comp Biochem Physiol A 147:438–444CrossRefGoogle Scholar
  45. Nolet BA, Wansink DEH, Kruuk H (1993) Diving of otters (Lutra lutra) in a marine habitat: use of depths by a single-prey loader. J Anim Ecol 62:22–32. doi: https://doi.org/10.2307/5479 CrossRefGoogle Scholar
  46. Österblom H, Olsson O, Blenckner T, Furness RW (2008) Junk-food in marine ecosystems. Oikos 117:967–977. doi: https://doi.org/10.1111/j.0030-1299.2008.16501.x CrossRefGoogle Scholar
  47. Paredes R, Jones IL, Boness DJ (2004) Reduced parental care, compensatory behaviour and reproductive costs experienced by female and male thick-billed murres equipped with data loggers. Anim Behav 69:197–208. doi: https://doi.org/10.1016/j.anbehav.2003.12.029 CrossRefGoogle Scholar
  48. Paredes R, Jones IL, Boness DJ (2006) Parental roles of male and female thick-billed murres and razorbills at the Gannet Islands, Labrador. Behav 143:451–481. doi: https://doi.org/10.1163/156853906776240641 CrossRefGoogle Scholar
  49. Paredes R, Jones IL, Boness DJ, Tremblay Y, Renner M (2008) Sex-specific differences in diving behaviour of two sympatric Alcini species: thick-billed murres and razorbills. Can J Zool 86:610–622. doi: https://doi.org/10.1139/Z08-036 CrossRefGoogle Scholar
  50. Ropert-Coudert Y, Kato A, Bost CA, Rodary D, Sato K, Le Maho Y, Naito Y (2002) Do Adélie penguins modify their foraging behaviour in pursuit of different prey? Mar Biol (Berl) 140:647–652. doi: https://doi.org/10.1007/s00227-001-0719-z CrossRefGoogle Scholar
  51. Ropert-Coudert Y, Grémillet D, Kato A, Ryan PG, Naito Y, Le Maho Y (2004a) A fine-scale time budget of Cape gannets provides insights into their foraging strategies. Anim Behav 67:985–992. doi: https://doi.org/10.1016/j.anbehav.2003.09.010 CrossRefGoogle Scholar
  52. Ropert-Coudert Y, Grémillet D, Ryan PG, Kato A, Naito Y, Le Maho Y (2004b) Between air and water: the plunge-dive of the Cape gannet Morus capensis. Ibis 146:281–290. doi: https://doi.org/10.1111/j.1474-919x.2003.00250.x CrossRefGoogle Scholar
  53. Ropert-Coudert Y, Grémillet D, Kato A (2006a) Swim speeds of free-ranging great cormorants. Mar Biol (Berl) 149:415–422. doi: https://doi.org/10.1007/s00227-005-0242-8 CrossRefGoogle Scholar
  54. Ropert-Coudert Y, Kato A, Wilson RP, Cannell B (2006b) Foraging strategies and prey encounter rate of free-ranging little penguins. Mar Biol (Berl) 149:139–148. doi: https://doi.org/10.1007/s00227-005-0188-x CrossRefGoogle Scholar
  55. Sato K, Mitani Y, Cameron MF, Siniff DB, Naito Y (2003) Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions. J Exp Biol 206:1461–1470. doi: https://doi.org/10.1242/jeb.00265 CrossRefGoogle Scholar
  56. Sato K, Daunt F, Watanuki Y, Takahashi A, Wanless S (2008) A new method to quantify prey acquisition in diving seabirds using wing stroke frequency. J Exp Biol 211:58–65. doi: https://doi.org/10.1242/jeb.009811 CrossRefGoogle Scholar
  57. Schluter D (1995) Adaptive radiation in sticklebacks: tradeoffs in feeding performance and growth. Ecology 76:82–90. doi: https://doi.org/10.2307/1940633 CrossRefGoogle Scholar
  58. Shepard ELC, Wilson RP, Halsey LG, Quintana F, Laich AG, Gleiss AC, Liebsch N, Myers AE, Norman B (2008) Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol 4:235–241. doi: https://doi.org/10.3354/ab00104 CrossRefGoogle Scholar
  59. Simeone A, Wilson RP (2003) In-depth studies of Magellanic penguins (Spheniscus magellanicus) foraging: can we estimate prey consumption by perturbations in the dive profile? Mar Biol (Berl) 143:825–831. doi: https://doi.org/10.1007/s00227-003-1114-8 CrossRefGoogle Scholar
  60. Svanbäck R, Bolnick DI (2005) Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol Ecol Res 7:993–1012Google Scholar
  61. Svanbäck R, Eklöv P (2003) Morphology-dependent foraging efficiency in perch: morphology: a tradeoff for ecological specialization? Oikos 102:273–284. doi: https://doi.org/10.1034/j.1600-0706.2003.12657.x CrossRefGoogle Scholar
  62. Takahashi A, Kokubun N, Mori Y, Shin HC (2008a) Krill-feeding behaviour of gentoo penguins as shown by animal-borne camera loggers. Polar Biol 31:1291–1294. doi: https://doi.org/10.1007/s00300-008-0502-4 CrossRefGoogle Scholar
  63. Takahashi A, Matsumoto K, Hunt GL, Shultz MT, Kitaysky AS, Sato K, Iida K, Watanuki Y (2008b) Thick-billed murres use different diving behaviors in mixed and stratified waters. Deep Sea Res Part II Top Stud Oceanogr 55:1837–1845. doi: https://doi.org/10.1016/j.dsr2.2008.04.005 CrossRefGoogle Scholar
  64. Tremblay Y, Cherel Y, Oremus M, Tveraa T, Chastel O (2003) Unconventional ventral attachment of time-depth recorders as a new method for investigating time budget and diving behaviour of seabirds. J Exp Biol 206:1929–1940CrossRefGoogle Scholar
  65. Tremblay Y, Cook TR, Cherel Y (2005) Time budget and diving behaviour of chick-rearing Crozet shags. Can J Zool 83:971–982. doi: https://doi.org/10.1139/z05-085 CrossRefGoogle Scholar
  66. Wanless S, Corfield T, Harris MP, Buckland ST, Morris JA (1993) Diving behaviour of the shag Phalacrocorax aristotelis (Aves: Pelecaniformes) in relation to water depth and prey size. J Zool (Lond) 231:11–25CrossRefGoogle Scholar
  67. Watanuki Y, Kato A, Mori Y, Naito Y (1993) Diving performance of Adelie penguins in relation to food availability in fast sea ice areas: comparison between years. J Anim Ecol 62:634–646. doi: https://doi.org/10.2307/5384 CrossRefGoogle Scholar
  68. Watanuki Y, Mehlum F, Takahashi A (2001) Water temperature sampling by foraging Brünnich’s Guillemots with bird-borne data loggers. J Avian Biol 32:189–193. doi: https://doi.org/10.1034/j.1600-048X.2001.320214.x CrossRefGoogle Scholar
  69. Watanuki Y, Niizuma Y, Gabrielson GW, Sato K, Naito Y (2003) Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Proc R Soc Lond B Biol Sci 270:483–488. doi: https://doi.org/10.1098/rspb.2002.2252 CrossRefGoogle Scholar
  70. Watanuki Y, Wanless S, Harris M, Lovvorn JR, Miyazaki M, Tanaka H, Sato K (2006) Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin. J Exp Biol 209:1217–1230. doi: https://doi.org/10.1242/jeb.02128 CrossRefGoogle Scholar
  71. Watanuki Y, Daunt F, Takahashi A, Newell M, Wanless S, Sato K, Miyazaki N (2008) Microhabitat use and prey capture of a bottom-feeding top predator, the European shag, shown by camera loggers. Mar Ecol Prog Ser 356:283–293. doi: https://doi.org/10.3354/meps07266 CrossRefGoogle Scholar
  72. Williams TM, Fuiman LA, Horning M, Davis RW (2004) The cost of foraging by a marine predator, the Weddell seal, Leptonychotes weddellii: pricing by the stroke. J Exp Biol 207:973–982. doi: https://doi.org/10.1242/jeb.00822 CrossRefGoogle Scholar
  73. Wilson RP, Ropert-Coudert Y, Kato A (2002) Rush and grab strategies in foraging marine endotherms: the case for haste in penguins. Anim Behav 63:85–95. doi: https://doi.org/10.1006/anbe.2001.1883 CrossRefGoogle Scholar
  74. Wilson RP, Scolaro JA, Grémillet D, Kierspel MAM, Laurenti S, Upton J, Gallelli H, Quintana F, Frere E, Muller G, Starten MT, Zimmer I (2005) How do Magellanic penguins cope with variability in their access to prey? Ecol Monogr 75:379–401. doi: https://doi.org/10.1890/04-1238 CrossRefGoogle Scholar
  75. Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ (2006) Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 75:1081–1090. doi: https://doi.org/10.1111/j.1365-2656.2006.01127.x CrossRefGoogle Scholar
  76. Woo KJ, Elliott KH, Davidson M, Gaston AJ, Davoren GK (2008) Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J Anim Ecol 77:1082–1091. doi: https://doi.org/10.1111/j.1365-2656.2008.01429.x CrossRefGoogle Scholar
  77. Ydenberg R, Clark C (1989) Aerobiosis and anaerobiosis during diving by western grebes: an optimal foraging approach. J Theor Biol 139:437–449. doi: https://doi.org/10.1016/S0022-5193(89)80064-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kyle H. Elliott
    • 1
  • Kerry J. Woo
    • 2
  • Silvano Benvenuti
    • 3
  1. 1.Department of ZoologyUniversity of ManitobaWinnipegCanada
  2. 2.Department of BiologyUniversity of OttawaOttawaCanada
  3. 3.Dipartimento di Etologia, Ecologia ed EvoluzioneUniversity of PisaPisaItaly

Personalised recommendations