Marine Biology

, Volume 156, Issue 8, pp 1559–1572 | Cite as

Microstructures of Antarctic cidaroid spines: diversity of shapes and ectosymbiont attachments

  • Bruno DavidEmail author
  • Stuart R. Stock
  • Francesco De Carlo
  • Vincent Hétérier
  • Chantal De Ridder
Original Paper


The echinoderm endoskeleton, located in the connective layer of the tegument, is organized into a three-dimensional mesh, the stereom. Among echinoids, the cidaroids depart from this pattern, and the shaft of the spine lacks an epidermis. Thus, the spines lack antifouling protection, allowing ectosymbionts such as bryozoans and foraminiferans to attach. This raises a question about the adaptive role of the cortical layer of the stereom. This study examined the micro- and mesostructure of the spines of 11 cidaroid species collected in the Weddell Sea and Drake Passage, and the nature of their ectosymbiont attachments. Scanning electron microscopy was used to characterize the cortex surface and X-ray micro computed tomography (μCT) to describe the symbiont attachments. Spine microstructure features provide a useful taxonomic character for distinguishing among three species in the genus Ctenocidaris, and challenge a previous parasitic interpretation of cortical filaments on the spines of Rhynchocidaris triplopora. Ectosymbiont attachments were classified as Anchoring, Molding, Cementing, or Corroding. The study suggests that some microstructure features may be protective, keeping the ectosymbionts away from the cortex and loosely attached at intervals along the shaft of the spine, while other micro-structures facilitate attachment over considerable areas of the shaft.


Spinosa Basal Wall Scallop Shell Apical Spine Primary Spine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of the BIANZO I and II projects supported by the Belgian Science Policy (PADDII projects). VH was supported by a PhD grant from the Belgian Science Policy (Belspo). This paper is a contribution of the team «Forme, Evolution, Diversité» of the laboratory Biogéosciences and of the Centre interuniversitaire de Biologie marine. It also contributes to the Agence Nationale de la Recherche project ANTFLOCKS. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Supplementary material

227_2009_1192_MOESM1_ESM.doc (44 kb)
Supplementary Table S1 (DOC 43 kb)
227_2009_1192_MOESM2_ESM.doc (36 kb)
Supplementary Table S1 (DOC 36 kb)


  1. Alexander SP, Delaca TE (1987) Feeding adaptation of the foraminiferan Cibicides refulgens living epizoically and parasitically on the Antarctic scallop Adamussium colbecki. Biol Bull 173:136–159. doi: CrossRefGoogle Scholar
  2. Alvarado JJ (2008) Seasonal occurrence and aggregation behavior of the sea urchin Astropyga pulvinata (Echinodermata: Echinoidea) in Bahia Culebra, Costa Rica. Pac Sci 62:579–592. doi:[579:SOAABO]2.0.CO;2 CrossRefGoogle Scholar
  3. Bailey RC, Byrnes J (1990) A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Syst Zool 39:124–130. doi: CrossRefGoogle Scholar
  4. Coppard SE, van Noordenburg H (2007) A new species of Lissocidaris (Echinodermata: Echinoidea: Cidaridae) from the Philippines: convergent evolution among smooth-spined cidaroids. Zootaxa 1493:53–65Google Scholar
  5. David B, Mooi R (1999) Contributions of the extraxial-axial theory to understanding the echinoderms. Bull Soc Geol Fr 170:91–101Google Scholar
  6. David B, Choné T, Mooi R, De Ridder C (2005a) Antarctic Echinoidea. In: Synopses of the Antarctic benthos, vol 10. Koeltz Scientific Books, KönigsteinGoogle Scholar
  7. David B, Choné T, Festeau A, Mooi R, De Ridder C (2005b) Biodiversity of Antarctic echinoids: a comprehensive and interactive database. Sci Mar 69(Suppl. 2):201–203. doi: CrossRefGoogle Scholar
  8. Fell HB (1954) Tertiary and recent Echinoidea of New Zealand. NZ Geol Surv Paleontol Bull 23:1–62Google Scholar
  9. Fell FJ (1976) The Cidaroida (Echinodermata: Echinoidea) of Antarctica and the Southern oceans. PhD thesis, University of Maine, OronoGoogle Scholar
  10. Gutt J, Schickan T (1998) Epibiotic relationships in the Antarctic benthos. Antarct Sci 10:398–405. doi: CrossRefGoogle Scholar
  11. Hanelt B, Van Schyndel D, Adema CM, Lewis LA, Loker ES (1996) The phylogenetic position of Rhopaluva ophiocomae (Orthonectida) based on 18 s ribosomal DNA sequence analysis. Mol Biol Evol 13:1187–1191CrossRefGoogle Scholar
  12. Hétérier V, De Ridder C, David B, Rigaud T (2004) Comparative biodiversity of ectosymbionts in two Antarctic cidarid echinoids, Ctenocidaris spinosa and Rhynchocidaris triplopora. In: Heinzeller T, Nebelsick JH (eds) Echinoderms: München. Taylor and Francis, London, pp 201–205Google Scholar
  13. Hétérier V, David B, De Ridder C, Rigaud T (2008) Ectosymbiosis, a critical factor in establishing local benthic biodiversity in Antarctic deep sea. Mar Ecol Prog Ser 364:67–76. doi: CrossRefGoogle Scholar
  14. Koehler R (1912) Echinodermes (astéries, ophiures et échinides). In: 2ème Expédition Antarctique Française 1908–1910. Masson, ParisGoogle Scholar
  15. Linse K, Walker LJ, Barnes DKA (2008) Biodiversity of echinoids and their epibionts around the Scotia Arc, Antarctica. Antarct Sci 20:227–244. doi: Google Scholar
  16. Lockhart SJ, Mooi RJ, Pearse JS (2003) Phylogeny, reproductive mode, and parasitism in Antarctic cidaroid sea urchins. Ber Polar Meeresforsch 470:112–115Google Scholar
  17. Märkel K, Röser U (1983a) The spine tissues in the echinoid Eucidaris tribuloides. Zoomorphology 103:25–41. doi: CrossRefGoogle Scholar
  18. Märkel K, Röser U (1983b) Calcite resorption in the spine of the Echinoid Eucidaris tribuloides. Zoomorphology 103:43–58. doi: CrossRefGoogle Scholar
  19. Mooi R, David B (1998) Evolution within a bizarre phylum: homologies of the first echinoderms. Am Zool 38:965–974. doi: CrossRefGoogle Scholar
  20. Mooi R, David B, Fell FJ, Choné T (2000) Three new species of bathyal cidaroids (Echinodermata: Echinoidea) from the Antarctic region. Proc Biol Soc Wash 113:224–237Google Scholar
  21. Mortensen T (1909) Die Echinoiden der Deutschen Südpolar Expedition 1901-1903. In: Deutsche Südpolar Expedition. Reimer, BerlinGoogle Scholar
  22. Mortensen T (1910) The Echinoidea of the Swedish South Polar Expedition. In: Schwedische Südpolar Expedition 1901–03, vol 6. Lithographisches Institut des Generalstabs, StockholmCrossRefGoogle Scholar
  23. Mortensen T (1928) A monograph of the Echinoidea, vol 1 Cidaroidea. Reitzel, CopenhagenGoogle Scholar
  24. Mortensen T, Rosenvinge KL (1910) Sur quelques plantes parasites dans les échinodermes. K Dan Vidensk Selsk Forhandling 4:339–354Google Scholar
  25. Smith AB (1980) Stereom microstructure of the echinoid test. Palaeontological Association, Spec Pap Palaeontol 25Google Scholar
  26. Vaitilingon D, Eeckhaut I, Fourgon D, Jangoux M (2004) Population dynamics, infestation and host selection of Vexilla vexillum, an ectoparasitic muricid of echinoids, in Madagascar. Dis Aquat Organ 61:241–255. doi: CrossRefGoogle Scholar
  27. Wang Y, De Carlo F, Mancini D, McNulty I, Tieman B, Bresnahan J, Foster I, Insley J, Lane P, von Laszewski G, Kesselman C, Su MH, Thiebaux M (2001) High-throughput X-ray microtomography system at the Advanced Photon Source. Rev Sci Instrum 72:2062–2068. doi: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bruno David
    • 1
    Email author
  • Stuart R. Stock
    • 2
  • Francesco De Carlo
    • 3
  • Vincent Hétérier
    • 1
    • 4
  • Chantal De Ridder
    • 4
  1. 1.Biogéosciences, UMR CNRS 5561Université de BourgogneDijonFrance
  2. 2.Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  4. 4.Laboratoire de Biologie MarineUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations