Marine Biology

, Volume 156, Issue 5, pp 875–889 | Cite as

Effects of light quality on initiation and development of meroplanktonic diatom blooms in a eutrophic shallow sea

  • Tomoyuki ShikataEmail author
  • Atsushi Nukata
  • Souta Yoshikawa
  • Tadashi Matsubara
  • Yasuhiro Yamasaki
  • Yohei Shimasaki
  • Yuji Oshima
  • Tsuneo Honjo
Original Paper


We investigated the effects of light quality on resting stage cell germination and vegetative cell growth of meroplanktonic diatoms in a small port in Hakata Bay, Japan and in the laboratory. During the investigation over the year of 2006, the meroplanktonic diatom bloom first occurred in the end of May and then repeated wane and wax until October in the small port. From late April to middle May, light penetrating the water column was often strong and attenuations of all spectral lights were low. During this period, Skeletonema costatum, Thalassiosira minima, and Chaetoceros sp. appeared frequently, followed by the blooms of S. costatum and Chaetoceros sp. in late May. Thereafter, S. costatum and Chaetoceros sp. bloomed in late June but not in middle June, when pigmented flagellates bloom appeared. The attenuation of short-wavelength light such as violet and blue lights was markedly high during these diatom and flagellate blooms; all blooms disappeared within several days. Vegetative cell strains of the three diatoms under light emitting diodes (LEDs) with six different spectra (violet, blue, green, orange, red, and near-infrared) grew at a higher rate under short-wavelength light, violet and blue. On the other hand, when suspensions of bottom sediments from Hakata Bay were cultured under the same LEDs and in the dark, vegetative cells of S. costatum appeared under all LEDs except for orange and near-infrared, vegetative cells of T. minima appeared under all LEDs but not in the dark, and vegetative cells of Chaetoceros sp. appeared under violet and blue LEDs. However, vegetative cell densities of the three diatoms increased much more under violet light than under other LEDs within a short period (6 days). Our study indicates that underwater penetration by short-wavelength light, such as violet and blue, may be an important factor in the initiation and development of meroplanktonic diatom blooms.


Sediment Suspension Dissolve Inorganic Nitrogen Light Quality Dissolve Inorganic Phosphorus Photosynthetically Available Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Drs. Ian R. Jenkinson and Nagasoe for revising the whole of our manuscript and giving useful suggestions. We thank anonymous reviewers for helpful comments and Fukuoka Fisheries and Marine Technology Research Center for use of the autoanalyzer.


  1. Altas D, Bannister TT (1980) Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species. Limnol Oceanogr 25:157–159CrossRefGoogle Scholar
  2. Anderson DM (1980) Effect of temperature conditioning on development and germination of Gonyaulax tamarensis (Dinophyceae) hypnozygotes. J Phycol 16:166–172. doi: CrossRefGoogle Scholar
  3. Anderson DM, Rengefors K (2006) Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: the importance of life cycle events. Limnol Oceanogr 51:860–873CrossRefGoogle Scholar
  4. Bricaud A, Morel A, Prieur L (1981) Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnol Oceanogr 26:43–53CrossRefGoogle Scholar
  5. Cadée GC (1986) Recurrent and changing seasonal patterns in phytoplankton of the westernmost inlet of the Dutch Wadden Sea from 1969 to 1985. Mar Biol (Berl) 93:281–289. doi: CrossRefGoogle Scholar
  6. Chihara M, Murano M (1997) An illustrated guide to marine plankton in Japan. Tokai University Press, ShizuokaGoogle Scholar
  7. Durbin EG (1978) Aspects of biology of resting spores of Thalassiosira nordenskioeldii and Detonula confervacea. Mar Biol (Berl) 45:31–37. doi: CrossRefGoogle Scholar
  8. Egge JK, Aksnes DL (1992) Silicate as regulating nutrient in phytoplankton competition. Mar Ecol Prog Ser 83:281–289. doi: CrossRefGoogle Scholar
  9. Erga SR, Heimdal BR (1984) Ecological studies on the phytoplankton of Korsfjorden, western Norway: the dynamics of a spring bloom seen in relation to hydrographical conditions and light regime. J Plankton Res 6:67–94. doi: CrossRefGoogle Scholar
  10. Faust MA, Sager JC, Meeson BM (1982) Response of Prorocentrum mariae-lebouriae (Dinophyceae) to light of different spectral qualities and irradiances: growth and pigmentation. J Phycol 18:349–356. doi: CrossRefGoogle Scholar
  11. French FW, Hargraves PE (1980) Physiological characteristics of plankton diatom resting spores. Mar Biol Lett 1:185–195Google Scholar
  12. Fukuyo Y, Takano H, Chihara M, Matsuoka K (1990) Red tide organisms in Japan. An illustrated taxonomic guide. Uchida Rokakuho, TokyoGoogle Scholar
  13. Gallagher JC, Wood AM, Alberte RS (1984) Ecotypic differentiation in the marine diatom Skeletonema costatum: influence of light intensity on the photosynthetic apparatus. Mar Biol (Berl) 82:121–134. doi: CrossRefGoogle Scholar
  14. Gallegos CL, Jordan TE (2002) Impact of the spring 2000 phytoplankton bloom in Chesapeake Bay on optical properties and light penetration in the Rhode River, Maryland. Estuaries 25:508–518. doi: CrossRefGoogle Scholar
  15. Glover HE, Keller MD, Spinrad RW (1987) The effects of light quality and intensity on photosynthesis and growth of marine eukaryotic and prokaryotic phytoplankton clones. J Exp Mar Biol Ecol 105:137–159. doi: CrossRefGoogle Scholar
  16. Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–311Google Scholar
  17. Haigh R, Taylor FJR, Sutherland TF (1992) Phytoplankton ecology of Sechelt Inlet, a fjord system on the British Columbia coast. I. General features of the nano and microplankton. Mar Ecol Prog Ser 89:117–134. doi: CrossRefGoogle Scholar
  18. Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28:279–288. doi: CrossRefGoogle Scholar
  19. Hitchcock GL, Smayda TJ (1977) The importance of light in the initiation of the 1972–1973 winter–spring diatom bloom in Narragansett Bay. Limnol Oceanogr 22:126–131CrossRefGoogle Scholar
  20. Holdsworth ES (1985) Effects of growth factors and light quality on the growth, pigmentation, and photosynthesis of two diatoms, Thalassiosira gravida and Phaeodactylum tricornutum. Mar Biol (Berl) 86:253–262. doi: CrossRefGoogle Scholar
  21. Hollibaugh JT, Seibert DRL, Thomas WH (1981) Observations on the survival and germination of resting spores of three Chaetoceros (Bacillariophyceae) species. J Phycol 17:1–9. doi: CrossRefGoogle Scholar
  22. Honjo T, Tabata K (1985) Growth dynamics of Olisthodiscus luteus in outdoor tanks with flowing coastal water and in small vessels. Limnol Oceanogr 30:653–664CrossRefGoogle Scholar
  23. Humphrey GF (1983) The effect of the spectral composition of light on the growth, pigments, and photosynthetic rate of unicellular marine algae. J Exp Mar Biol Ecol 66:49–67. doi: CrossRefGoogle Scholar
  24. Imai I, Itakura S (1999) Importance of cysts in the population dynamics of the red tide flagellate Heterosigma akashiwo (Raphidophyceae). Mar Biol (Berl) 133:755–762. doi: CrossRefGoogle Scholar
  25. Imai I, Itakura S, Yamaguchi M, Honjo T (1996) Selective germination of Heterosigma akashiwo (Raphidophyceae) cysts in bottom sediments under low light conditions: a possible mechanism of the red tide initiation. In: Yasumoto T, Oshima Y, Fukuyo Y (eds) Harmful and toxic algal blooms. IOC-UNESCO, Paris, pp 197–200Google Scholar
  26. Itakura S (2000) Physiological ecology of the resting stage cells of coastal planktonic diatoms. Bull Fish Envion Inland Sea 2:67–130Google Scholar
  27. Itakura S, Imai I, Itoh K (1997) “Seed bank” of coastal planktonic diatoms in bottom sediments of Hiroshima Bay, Seto Inland Sea, Japan. Mar Biol (Berl) 128:497–508. doi: CrossRefGoogle Scholar
  28. Jiménez R (1993) Ecological factors related to Gyrodinium instriatum bloom in the inner estuary of the Gulf of Guayaquil. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea. Elsevier, Amsterdam, pp 257–262Google Scholar
  29. Karentz D, Smayda TJ (1984) Temperature and seasonal occurrence patterns of 30 dominant phytoplankton species in Narragansett Bay over a 22-year period (1959–1980). Mar Ecol Prog Ser 18:277–293. doi: CrossRefGoogle Scholar
  30. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Lomas MW, Glibert PM (2000) Comparisons of nitrate uptake, storage, and reduction in marine diatoms and flagellates. J Phycol 36:903–913. doi: CrossRefGoogle Scholar
  32. Matsubara T, Nagasoe S, Yamasaki Y, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2008) Inhibitory effects of centric diatoms on the growth of the dinoflagellate Akashiwo sanguinea. Nippon Suisan Gakkaishi 74:598–606. doi: CrossRefGoogle Scholar
  33. McQuoid MR (2005) Influence of salinity on seasonal germination of resting stages and composition of microplankton on the Swedish west coast. Mar Ecol Prog Ser 289:151–163. doi: CrossRefGoogle Scholar
  34. McQuoid MR, Hobson LA (1996) Diatom resting stages. J Phycol 32:889–902. doi: CrossRefGoogle Scholar
  35. Mercado JM, Sánchez-Saavedra MdP, Correa-Reyes G, Lubián Montero O, Figueroa FL (2004) Blue light effect on growth, light absorption characteristics, and photosynthesis of five benthic diatom strains. Aquat Bot 78:265–277. doi: CrossRefGoogle Scholar
  36. Mouget J-L, Rosa P, Vachoux C, Tremblin G (2005) Enhancement of marennine production by blue light in the diatom Haslea ostrearia. J Appl Phycol 17:437–445. doi: CrossRefGoogle Scholar
  37. Nagasoe S (2006) Studies on the developmental mechanism of red tide blooms of the dinoflagellate Gyrodinium instriatum Freudenthal et Lee. Ph.D. dissertation, Kyushu University, FukuokaGoogle Scholar
  38. Nagasoe S, Toda S, Yamasaki Y, Oshima Y, Uchida T, Honjo T (2007) Growth inhibition of Gyrodinium instriatum (Dinophyceae) by Skeletonema costatum (Bacillariophyceae). Afr J Mar Sci 28:325–329CrossRefGoogle Scholar
  39. Park JS (1989) Studies on red tide phenomena in Korean coastal waters. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides. Elsevier, New York, pp 37–40Google Scholar
  40. Parkin TB, Block TD (1980) The effects of light quality on the growth of phototrophic bacteria in lakes. Arch Microbiol 125:19–27. doi: CrossRefGoogle Scholar
  41. Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine planktonic diatom. Mar Biol (Berl) 83:231–238. doi: CrossRefGoogle Scholar
  42. Pratt DM (1966) Competition between Skeletonema costatum and Olisthodiscus luteus in Narragansett Bay and in culture. Limnol Oceanogr 11:447–455CrossRefGoogle Scholar
  43. Schofield O, Bidigare RR, Barbara BP (1990) Spectral photosynthesis, quantum yield, and blue-green light enhancement of productivity rates in the diatom Chaetoceros gracile and the prymnesiophyte Emiliania huxleyi. Mar Ecol Prog Ser 64:175–186. doi: CrossRefGoogle Scholar
  44. Schwarz A-M, Markager S (1999) Light absorption and photosynthesis of a benthic moss community: importance of spectral quality of light and implications of changing light attenuation in the water column. Freshw Biol 42:609–623. doi: CrossRefGoogle Scholar
  45. Shikata T, Nagasoe S, Matsubara T, Yamasaki Y, Shimasaki Y, Oshima Y, Honjo T (2007) Effects of temperature and light on cyst germination and germinated cell survival of the noxious raphidophyte Heterosigma akashiwo. Harmful algae 6:700–706. doi: CrossRefGoogle Scholar
  46. Shikata T, Nagasoe S, Oh SJ, Matsubara T, Yamasaki Y, Shimasaki Y, Oshima Y, Honjo T (2008a) Effects of down- and up-shocks from rapid changes of salinity on survival and growth of estuarine phytoplankters. J Fac Agr. Kyushu Univ 53:81–87Google Scholar
  47. Shikata T, Nagasoe S, Matsubara T, Yamasaki Y, Shimasaki Y, Oshima Y, Uchida T, Jenkinson IR, Honjo T (2008b) Encystment and excystment of Gyrodinium instriatum Freudenthal et Lee. J Oceanogr 64:355–365. doi: CrossRefGoogle Scholar
  48. Shikata T, Nagasoe S, Matsubara T, Yoshikawa S, Yamasaki Y, Shimasaki Y, Oshima Y, Jenkinson IR, Honjo T (2008c) Factors influencing the initiation of blooms of the raphidophyte Heterosigma akashiwo and the diatom Skeletonema costatum in a port in Japan. Limnol Oceanogr 53:2503–2518CrossRefGoogle Scholar
  49. Shikata T, Yoshikawa S, Matsubara T, Tanoue W, Yamasaki Y, Shimasaki Y, Matsuyama Y, Oshima Y, Jenkinson IR, Honjo T (2008d) Growth dynamics of Heterosigma akashiwo (Raphidophyceae) in Hakata Bay, Japan. Eur J Phycol 43:395–411. doi: CrossRefGoogle Scholar
  50. Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42:1137–1153CrossRefGoogle Scholar
  51. Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 nm). Appl Opt 20:177–184. doi: CrossRefGoogle Scholar
  52. Stomp M, Huisman J, Stal LJ, Matthijs HCP (2007) Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J 1:271–282CrossRefGoogle Scholar
  53. Strickland JDH, Parsons TR (1968) A practical handbook of seawater analysis. Fisheries Research Board of Canada, OttawaGoogle Scholar
  54. Vernet M, Neori A, Haxo FT (1989) Spectral properties and photosynthetic action in red-tide populations of Prorocentrum micans and Gonyaulax polyedra. Mar Biol (Berl) 103:365–371. doi: CrossRefGoogle Scholar
  55. Yamasaki Y, Nagasoe S, Matsubara T, Shikata T, Shimasaki Y, Oshima Y, Honjo T (2007) Allelopathic interactions between the bacillariophyte Skeletonema costatum and the raphidophyte Heterosigma akashiwo. Mar Ecol Prog Ser 339:83–92. doi: CrossRefGoogle Scholar
  56. Yamochi S (1989) Mechanisms for outbreak of Heterosigma akashiwo red tide in Osaka Bay, Japan. Bull Osaka Prefer Fish Exp Stat 8:1–110Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tomoyuki Shikata
    • 1
    Email author
  • Atsushi Nukata
    • 1
  • Souta Yoshikawa
    • 1
  • Tadashi Matsubara
    • 1
  • Yasuhiro Yamasaki
    • 1
  • Yohei Shimasaki
    • 1
  • Yuji Oshima
    • 1
  • Tsuneo Honjo
    • 1
  1. 1.Laboratory of Marine Environmental Science, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan

Personalised recommendations