Advertisement

Marine Biology

, Volume 156, Issue 4, pp 763–770 | Cite as

The effect of seasonality on oxidative metabolism in the sea urchin Loxechinus albus

  • Gabriela Malanga
  • Analía Perez
  • Jorge Calvo
  • Susana PuntaruloEmail author
Original Paper

Abstract

The objective of the present study was to investigate seasonal variations in the oxidative metabolism of the sea urchin Loxechinus albus gonads. The reported spawning period for this species is from September to November. Lipid radical content showed non-significant changes upon the seasons. Ascorbyl radical content and the content of α-tocopherol were lower in samples collected in spring and summer as compared to the values in winter-collected animals. Ascorbate content decreased in samples collected in fall as compared to those collected in winter. For the lipophilic compartment, the lipid radical content/α-tocopherol content ratio is an indicator of oxidative stress. This index increased significantly in tissues during spawning as compared to the values in samples collected during winter. The ascorbyl content/ascorbate content ratio is an indicator of oxidative stress for the hydrophilic milieu. A significant decrease by 66% was determined in tissues from gonads of animals collected in summer as compared to values in animals collected in winter. The data reported here suggest a different profile of response against oxidative stress at the lipophilic and hydrophilic milieus in L. albus gonads.

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Digestive Gland Content Ratio Spin Adduct 

Notes

Acknowledgments

This study was supported by grants, assigned to S.P., by the University of Buenos Aires and CONICET, and to G.M. by ANPCyT (PICT 38161). S.P., J.C. and G.M. are career investigator from CONICET. The authors are grateful to D. Aureliano and M. Gutierrez for technical assistance.

References

  1. Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biol Physiol A 138:405–415. doi: https://doi.org/10.1016/j.cbpb.2004.05.013 CrossRefGoogle Scholar
  2. Abele-Oeschger D, Oeschger R, Theede H (1994) Biochemical adaptations of Nereis diversicolor (Polychaeta) to temporarily increased hydrogen peroxide levels in intertidal sandflats. Mar Ecol Prog Ser 106:101–110. doi: https://doi.org/10.3354/meps106101 CrossRefGoogle Scholar
  3. Andrew NY, Agatsuma A, Bazhin E, Creaser D, Barnes L, Botsford A, Bradbury A, Campbell S, Einnarsson P, Gerring K, Hebert M, Hunter SB, Hur C, Johnson MA, Juinio-Meñez P, Kalvass R, Miller C, Vadas D, Woobdy Z, Xiaoqui A (2002) Status and management of world sea urchins fisheries. Oceanogr Mar Biol Annu Rev 40:343–425Google Scholar
  4. Arrigoni OJ (1994) Ascorbate system in plant development. J Bioenerg Biomembr 26:407–419. doi: https://doi.org/10.1007/BF00762782 CrossRefGoogle Scholar
  5. Bernasconi I (1947) Distribución geográfica de los equinoideos argentinos. Soc Arg Est Geog 6:97–114Google Scholar
  6. Bernasconi I (1953) Monografía de los Equinoideos argentinos. Anales del Museo Hist Nat 2a Ser 6:23–25Google Scholar
  7. Brazao S, Morais S, Boaventura D, Ré P, Narciso L, Hawkins SJ (2003) Spatial and temporal variation of the fatty acid composition of Patella spp. (Gastropoda: Prosobranchia) soft bodies and gonads. Comp Biochem Physiol B 136:425–441. doi: https://doi.org/10.1016/S1096-4959(03)00243-4 CrossRefGoogle Scholar
  8. Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543. doi: https://doi.org/10.1006/abbi.1993.1074 CrossRefGoogle Scholar
  9. Dayton PK (1985) The structure and regulation of some South American kelp communities. Ecol Monogr 55:447–468. doi: https://doi.org/10.2307/2937131 CrossRefGoogle Scholar
  10. Desai I (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–146. doi: https://doi.org/10.1016/S0076-6879(84)05019-9 CrossRefGoogle Scholar
  11. Doba T, Burton GW, Ingold KU (1985) Antioxidant and co-antioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water-soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim Biophys Acta 835:298–303CrossRefGoogle Scholar
  12. Foyer C, Rowell J, Walker D (1983) Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239–244. doi: https://doi.org/10.1007/BF00405188 CrossRefGoogle Scholar
  13. Galleano M, Aimo L, Puntarulo S (2002) Ascorbyl radical/ascorbate ratio in plasma from iron overloaded rats as oxidative stress indicator. Toxicol Lett 133:193–201. doi: https://doi.org/10.1016/S0378-4274(02)00196-0 CrossRefGoogle Scholar
  14. Geracitano LA, Monserrat JM, Bianchini A (2004) Oxidative stress in Laeonereis acuta (Polychaeta Nereididae): environmental and seasonal effects. Mar Environ Res 58:625–630. doi: https://doi.org/10.1016/j.marenvres.2004.03.053 CrossRefGoogle Scholar
  15. Giulivi C, Cadenas E (1993) The reaction of ascorbic acid with different heme iron redox states of myoglobin. FEBS Lett 332:287–290. doi: https://doi.org/10.1016/0014-5793(93)80651-A CrossRefGoogle Scholar
  16. Halliwell B, Gutteridge JMC (1985) Lipid peroxidation: a radical chain reaction. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 2nd edn. Clarendon Press, Oxford, pp 188–276Google Scholar
  17. Heilmayer O, Brey T, Storch D, Mackensen A, Arntz WE (2005) Population dynamics and metabolism of Aequipecten opercularis (L.) from the western English Channel (Roscoff, France). J Sea Res 52:33–44. doi: https://doi.org/10.1016/j.seares.2003.07.005 CrossRefGoogle Scholar
  18. Hernando MP (2006) Efectos de la radiación solar sobre el fitoplancton de aguas Antárticas y sub-Antárticas. PhD Thesis, University of Buenos Aires, School of Natural Sciences, Buenos AiresGoogle Scholar
  19. Keesing JK, Hall KC (1998) Review of harvests of status of world sea urchins fisheries points to opportunities of aquaculture. J Shellfish Res 17:1597–1604Google Scholar
  20. Keller M, Sommer A, Pörtner HO, Abele D (2004) Seasonality of energetic functioning and reactive oxygen species production by mitochondria of the lugworm Arenicola marina, exposed to acute temperature changes. J Exp Biol 207:2529–2538. doi: https://doi.org/10.1242/jeb.01050 CrossRefGoogle Scholar
  21. Kotake Y, Tanigawa T, Tanigawa M, Ueno I, Allen DR, Lai C (1996) Continuous monitoring of cellular nitric oxide generation by spin trapping with an iron–dithiocarbamate complex. Biochim Biophys Acta 1289:362–368CrossRefGoogle Scholar
  22. Lai EK, Crossley C, Sridhar R, Misra HP, Janzen EG, McCay PB (1986) In vivo spin trapping of free radicals generated in brain, spleen, and liver during γ radiation of mice. Arch Biochem Biophys 244:156–160. doi: https://doi.org/10.1016/0003-9861(86)90104-9 CrossRefGoogle Scholar
  23. Lukyanova ON, Khotimchenko YS (1995) Lipid peroxidation in organs of the scallop Mizuhopecten yessoensis and sea-urchin Strongylocentrotus intermedius during the reproductive cycle. Comp Biochem Physiol B 110:371–377. doi: https://doi.org/10.1016/0305-0491(94)00154-M CrossRefGoogle Scholar
  24. Malanga G, Estevez MS, Calvo J, Abele D, Puntarulo S (2007) The effect of seasonality on oxidative metabolism in Nacella (Patinigera) magellanica. Comp Biochem Physiol A 146:551–558CrossRefGoogle Scholar
  25. Olave S, Bustos E, Lawrence JM, Cárcamo P (1997) The effect of size and diet on gonad production by the Chilean sea urchin Loxechinus albus. J World Aquacult Soc 32:210–214CrossRefGoogle Scholar
  26. Pérez AF, Morriconi E, Boy C, Calvo J (2008) Seasonal changes in energy allocation to somatic and reproductive body components of the common cold temperature sea urchin Loxechinus albus in a sub-Antarctic environment. Polar Biol 31:443–449. doi: https://doi.org/10.1007/s00300-007-0370-3 CrossRefGoogle Scholar
  27. Porter NA (1984) Chemistry of lipid peroxidation. Methods Enzymol 105:273–282. doi: https://doi.org/10.1016/S0076-6879(84)05035-7 CrossRefGoogle Scholar
  28. Power A, Sheedan D (1996) Seasonal variations in the antioxidant defense systems of gills and digestive gland of the blue mussel, Mytilus edulis. Comp Biochem Physiol C 114:99–103. doi: https://doi.org/10.1016/0300-9629(95)02098-5 CrossRefGoogle Scholar
  29. Sadrzadeh SMH, Eaton JW (1988) Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate. J Clin Invest 82:1510–1515. doi: https://doi.org/10.1172/JCI113759 CrossRefGoogle Scholar
  30. Schöttler U (1989) Anaerobic metabolism in the lugworm Arenicola marina during low tide: the influence of developing reproductive cells. Comp Biochem Physiol A 92:1–7. doi: https://doi.org/10.1016/0300-9629(89)90731-7 CrossRefGoogle Scholar
  31. Siikavuopio ST, Christiansen JS, Sæther B-J, Dale T (2007) Seasonal variation in feed intake under constant temperature and natural photoperiod in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 272:328–334. doi: https://doi.org/10.1016/j.aquaculture.2007.09.003 CrossRefGoogle Scholar
  32. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman, New YorkGoogle Scholar
  33. Vadas RL, Beal B, Dowling T, Fegley JC (2000) Experimental field tests of natural algal diets on gonad index and quality in the green sea urchin, Strongylocentrotus droebachiensis: a case for rapid summer production in post-spawned animals. Aquaculture 182:115–135. doi: https://doi.org/10.1016/S0044-8486(99)00254-9 CrossRefGoogle Scholar
  34. Vásquez JA, Buschmann AH (1997) Herbivore–kelp interactions in Chilean subtidal communities: a review. Rev Chil Hist Nat 70:41–52Google Scholar
  35. Viarengo A, Canesi L, Livingstone DR (1991) Seasonal variations in the antioxidant defence enzymes and lipid peroxidation of the digestive gland of mussels. Comp Biochem Physiol C 100:187–190. doi: https://doi.org/10.1016/0742-8413(91)90151-I CrossRefGoogle Scholar
  36. Walker CW, Unuma T, Lesser MP (2007) Chapter 2. Gametogenesis and reproduction of sea urchins. Dev Aquac Fish Sci 37:11–33CrossRefGoogle Scholar
  37. Wilhelm Filho D, Torres MA, Tribess TB, Pedrosa RC, Soares CHL (2001a) Influence of season and pollution on the antioxidant defenses of the cichlid fish acará (Geophagus brasiliensis). Braz J Med Biol Res 34:719–726. doi: https://doi.org/10.1590/S0100-879X2001000600004 CrossRefGoogle Scholar
  38. Wilhelm Filho D, Tribess TB, Gáspari C, Claudio FD, Torres MA, Magalhaes ARM (2001b) Seasonal changes in antioxidant defenses of the digestive gland of the brown mussel (Perna perna). Aquaculture 203:149–158. doi: https://doi.org/10.1016/S0044-8486(01)00599-3 CrossRefGoogle Scholar
  39. Wills ED (1966) Mechanisms of lipid peroxide formation in animal tissue. Biochem J 99:667–676CrossRefGoogle Scholar
  40. Wong JL, Wessel GM (2005) Reactive oxygen species and Udx1 during early sea urchin development. Dev Biol 288:317–333. doi: https://doi.org/10.1016/j.ydbio.2005.07.004 CrossRefGoogle Scholar
  41. Yamamoto Y (2001) Role of oxygen species and antioxidants in photoaging. J Dermatol Sci 27:1–4. doi: https://doi.org/10.1016/S0923-1811(01)00120-7 CrossRefGoogle Scholar
  42. Yamamoto Y, Fujisawa A, Hara A, Dunlap WC (2001) An unusual vitamin E constituent (α-tocomonoenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments. Proc Natl Acad Sci USA 98:13144–13148. doi: https://doi.org/10.1073/pnas.241024298 CrossRefGoogle Scholar
  43. Zar JH (1984) Biostatistical analysis. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gabriela Malanga
    • 1
  • Analía Perez
    • 1
  • Jorge Calvo
    • 1
  • Susana Puntarulo
    • 2
    • 3
    Email author
  1. 1.Centro Austral de Investigaciones Científicas (CADIC-CONICET)UshuaiaArgentina
  2. 2.Physical Chemistry-PRALIB, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.Fisicoquímica, Facultad de Farmacia y BioquímicaBuenos AiresArgentina

Personalised recommendations