Advertisement

Marine Biology

, Volume 156, Issue 4, pp 679–687 | Cite as

Historical biogeography and speciation in the Creole wrasses (Labridae, Clepticus)

  • Ricardo BeldadeEmail author
  • J. B. Heiser
  • D. R. Robertson
  • J. L. Gasparini
  • S. R. Floeter
  • G. Bernardi
Original Paper

Abstract

We tested whether vicariance or dispersal was the likely source of speciation in the genus Clepticus by evaluating the evolutionary timing of the effect of the mid-Atlantic barrier, which separates C. brasiliensis and C. africanus, and the Amazon barrier, which separates C. parrae and C brasiliensis. Genetic data from three mitochondrial genes and one nuclear gene were used. Mitochondrial genes separated Clepticus into three well supported clades corresponding to the three recognized allopatric morpho-species. All analyses provided consistent support for an initial separation (~9.68 to 1.86 mya; 4.84% sequence divergence) of the Caribbean and South Atlantic lineages, followed by a much more recent divergence (~ 0.60 to 0.12 mya; 0.3% sequence divergence) of the Brazilian and African sister morpho-species. Both these phylogenetic events occurred well after the formation of the two barriers that currently separate those three allopatric populations. The planktonic larval duration of these species (35–49 days) and coastal pelagic habits may have facilitated dispersal by this genus across those dispersal barriers after they formed.

Keywords

Reef Fish Molecular Clock Patch Reef Pelagic Larval Duration Brazilian Species 

Notes

Acknowledgments

We would like to thank Ken Clifton for collecting samples from San Blas, Panama, and Luiz Rocha and Suzanne Mills for reviewing the manuscript. R. Beldade was supported by a Foundation for Science and Technology grant (SFRH/BPD/26901/2006) and S.R. Floeter by a National Geographic Society grant (Grant #7937-05).

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. Allsop DJ, West SA (2003) Constant relative age and size at sex change for sequentially hermaphroditic fish. J Evol Biol 16:921–929. doi: https://doi.org/10.1046/j.1420-9101.2003.00590.x CrossRefGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Bernardi G, Holbrook SJ, Schmitt RJ, Crane NL, DeMartini E (2002) Species boundaries, populations, and colour morphs in the coral reef three-spot damselfish (Dascyllus trimaculatus) species-complex. Proc R Soc Lond 269:599–605. doi: https://doi.org/10.1098/rspb.2001.1922 CrossRefGoogle Scholar
  4. Bernardi G, Findley L, Rocha-Olivares A (2003) Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution 57:1599–1609CrossRefGoogle Scholar
  5. Bernardi G, Alva-Campbell YR, Gasparini JL, Floeter SR (2008) Molecular ecology, speciation, and evolution of the reef fish genus Anisotremus. Mol Phylogenet Evol 48:929–935. doi: https://doi.org/10.1016/j.ympev.2008.05.011 CrossRefGoogle Scholar
  6. Bowen BW, Bass AL, Rocha LA, Grant WS, Robertson DR (2001) Phylogeography of the trumpet fish (Aulostomus spp.): ring species complex on a global scale. Evolution 55:1029–1039. doi: https://doi.org/10.1554/0014-3820(2001)055[1029:POTTAR]2.0.CO;2 CrossRefGoogle Scholar
  7. Bowen BW, Bass AL, Muss AJ, Carlin J, Robertson DR (2006) Phylogeography of two Atlantic squirrel fishes (Family Holocentridae): exploring links between pelagic larval duration and population connectivity. Mar Biol (Berl) 149:899–913. doi: https://doi.org/10.1007/s00227-006-0252-1 CrossRefGoogle Scholar
  8. Briggs JC (1974) Marine zoogeography. McGraw-Hill, NewYorkGoogle Scholar
  9. Brown JH, Lomolino MV (1998) Biogeography. Sinauer Associates, Sunderland, MAGoogle Scholar
  10. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256PubMedGoogle Scholar
  11. Costagliola D, Robertson DR, Guidetti P, Stefanni S, Wirtz P, Heiser JB, Bernardi G (2004) Evolution of coral reef fish Thalassoma spp. (Labridae). 2. Evolution of the eastern Atlantic species. Mar Biol (Berl) 144:377–383. doi: https://doi.org/10.1007/s00227-003-1200-y CrossRefGoogle Scholar
  12. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  13. Craig MT, Hastings PA, Pondella DJ (2004) Speciation in the Central American seaway: the importance of taxon sampling in the identification of trans-isthmian geminate pairs. J Biogeogr 31:1085–1091. doi: https://doi.org/10.1111/j.1365-2699.2004.01035.x CrossRefGoogle Scholar
  14. Domingues VS, Santos RS, Brito A, Almada V (2006) Historical population dynamics and demography of the eastern Atlantic pomacentrid Chromis limbata (Valenciennes, 1833). Mol Phylogenet Evol 40:139–147. doi: https://doi.org/10.1016/j.ympev.2006.02.009 CrossRefGoogle Scholar
  15. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854PubMedGoogle Scholar
  16. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi: https://doi.org/10.2307/2408678 CrossRefGoogle Scholar
  17. Floeter SR, Gasparini JL (2000) The southwestern Atlantic fish fauna: composition and zoogeographic patterns. J Fish Biol 56:1099–1114. doi: https://doi.org/10.1111/j.1095-8649.2000.tb02126.x CrossRefGoogle Scholar
  18. Floeter SR, Rocha LA, Robertson DR et al (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47Google Scholar
  19. Heiser JB, Moura RL, Robertson DR (2000) Two new species of Creole wrasse (Labridae: Clepticus) from opposite sides of the Atlantic Aqua. J Ichthyol Aquat Biol 4:67–76Google Scholar
  20. Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–240. doi:10.1130/0091-7613(1995)023<0237:ATAACF>2.3.CO;2CrossRefGoogle Scholar
  21. Huelsenbeck JP, Ronquist F (2001) Mrbayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755. doi: https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefGoogle Scholar
  22. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66. doi: https://doi.org/10.1007/BF00174041 CrossRefGoogle Scholar
  23. Leis JM, McCormick MI (2002) The biology, behavior and ecology of the pelagic larval stage of coral reef fishes. In: Sale P (ed) Dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 171–200Google Scholar
  24. Lieske E, Myers R (1994) Collins pocket guide. Coral reef fishes: Indo-Pacific and Caribbean including the Red Sea. Harper & Collins, PrincetonGoogle Scholar
  25. McCune AR, Lovejoy NR (1998) The relative rate of sympatric and allopatric speciation in fishes: tests using DNA sequence divergences between sister species and among clades. In: Howard DJ, Berlocher SH (eds) Endless forms: species and speciation. Oxford University Press, New York, pp 132–153Google Scholar
  26. Meyer A (1993) Evolution of mitochondrial DNA in fishes. Biochemistry and molecular biology of fishes, vol 2. Molecular biology frontiers. In: Hochachka PW, Mommsen TP (eds) 2.3 Phylogenetic analyses and population structure. Elsevier, Amsterdam, pp 1–38Google Scholar
  27. Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572. doi: https://doi.org/10.1554/0014-3820(2001)055[0561:POOTRO]2.0.CO;2 CrossRefGoogle Scholar
  28. Pittman WCIII, Cande S, LaBrecque J, Pindell J (1993) Fragmentation of Gondwana: the separation of Africa from South America. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 15–34CrossRefGoogle Scholar
  29. Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: https://doi.org/10.1093/bioinformatics/14.9.817 CrossRefGoogle Scholar
  30. Randall JE (1996) Caribbean reef fishes, 3rd edn. TFH, Neptune CityGoogle Scholar
  31. Robertson DR, Hoffman SG (1977) The roles of female mate choice and predation in the mating systems of some tropical labroid fishes. Z Tierpsychol 45:298–320CrossRefGoogle Scholar
  32. Robertson DR, Karg F, Moura RL, Victor BC, Bernardi G (2006) Mechanisms of speciation and faunal enrichment in Atlantic parrot fishes. Mol Phylogenet Evol 40:795–807. doi: https://doi.org/10.1016/j.ympev.2006.04.011 CrossRefGoogle Scholar
  33. Rocha LA, Bass AL, Robertson DR, Bowen BW (2002) Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeon fishes (Teleostei: Acanthuridae). Mol Ecol 11:243–252. doi: https://doi.org/10.1046/j.0962-1083.2001.01431.x CrossRefGoogle Scholar
  34. Rocha LA (2003) Patterns of distribution and processes of speciation in Brazilian reef fishes. J Biogeogr 30:1161–1171. doi: https://doi.org/10.1046/j.1365-2699.2003.00900.x CrossRefGoogle Scholar
  35. Rocha LA (2004) Mitochondrial DNA and color pattern variation in three western Atlantic Halichoeres (Labridae), with the revalidation of two species. Copeia 2004:770–782. doi: https://doi.org/10.1643/CG-04-106 CrossRefGoogle Scholar
  36. Rocha LA, Robertson DR, Rocha CR, Van Tassell JL, Craig MT, Bowen BW (2005) Recent invasion of the tropical Atlantic by an Indo-Pacific coral reef fish. Mol Ecol 14:3921–3928. doi: https://doi.org/10.1111/j.1365-294X.2005.02698.x CrossRefGoogle Scholar
  37. Rocha LA, Craig MT, Bowen BW (2007) Phylogeography and the conservation of coral reef fishes. Coral Reefs 26:501–512. doi: https://doi.org/10.1007/s00338-007-0261-7 CrossRefGoogle Scholar
  38. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  39. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116CrossRefGoogle Scholar
  40. Swofford DL (2002) PAUP*: phylogenetic analyses using parsimony (*and other methods), Version 4. Sinauer Associates, SutherlandGoogle Scholar
  41. Victor BC (1986) Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar Biol (Berl) 90:317–326. doi: https://doi.org/10.1007/BF00428555 CrossRefGoogle Scholar
  42. Westneat MW, Alfaro ME (2005) Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Mol Phylogenet Evol 36:370–390. doi: https://doi.org/10.1016/j.ympev.2005.02.001 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2008

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://doi.org/creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Ricardo Beldade
    • 1
    Email author
  • J. B. Heiser
    • 2
  • D. R. Robertson
    • 3
  • J. L. Gasparini
    • 4
  • S. R. Floeter
    • 5
  • G. Bernardi
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzUSA
  2. 2.Department of Ecology and Evolutionary Biology, Stimson HallCornell UniversityIthacaUSA
  3. 3.Smithsonian Tropical Research InstitutePanamaUSA
  4. 4.Departamento de Ecologia e Recursos NaturaisUniversidade Federal do Espírito SantoVitóriaBrazil
  5. 5.Departamento de Ecologia e ZoologiaUniversidade Federal de Santa CatarinaFlorianopolisBrazil

Personalised recommendations