Skip to main content

Advertisement

Log in

Genetic diversity of aerobic anoxygenic photosynthetic bacteria in open ocean surface waters and upper twilight zones

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Aerobic anoxygenic phototrophic bacteria (AAPB) represent a widespread mixotrophic bacterial group in marine ecosystems. Here we investigated AAPB genetic diversity in the surface waters and upper twilight zones of the central Pacific, Atlantic, and Indian oceans by amplifying an AAPB marker gene (pufM, encoding photosynthetic reaction center small subunit) directly from bacterioplankton community DNA. Phylogenetic and statistical analysis of 267 pufM partial sequences in six clone libraries revealed a high diversity pattern in open ocean AAPB communities. Various AAPB subgroups belonging to Alpha- and Gamma-proteobacteria were found in both surface and upper twilight zone waters. In most samples, subgroups in which no pure culture was isolated as yet were predominant. By sampling a wide size range of bacterioplankton (0.22–200 μm) and introducing nested PCR to amplification, we retrieved abundant pufM fragments (136 sequences in 37 OTUs) directly from upper twilight zone samples. AAPB populations in upper twilight zones covered major subgroups found in surface waters and had a slightly lower diversity, higher dominance, and lower GC and GC3 contents in pufM genes than those in surface AAPB populations. These diversity data combined with previous BChl.a data in upper twilight zones support the hypothesis that AAPB may be present below euphotic zones based on the speculation that AAPB can utilize the dim light in twilight zones as a supplement to energy supply in their heterotrophic lives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achenbach LA, Carey J, Madigan MT (2001) Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl Environ Microbiol 67:2922–2926

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allgaier M, Uphoff H, Felske A, Wagner-Dobler I (2003) Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosyn Res 73:109–114

    CAS  Google Scholar 

  • Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc Natl Acad Sci USA 102:9306–9310

    PubMed  CAS  PubMed Central  Google Scholar 

  • Beja O, Suzuki MT, Heidelberg JF, Nelson WC, Preston CM, Hamada T, Eisen JA, Fraser CM, DeLong EF (2002) Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature 415:630–633

    PubMed  CAS  Google Scholar 

  • Biebl H, Allgaier M, Lunsdorf H, Pukall R, Tindall BJ, Wagner-Dobler I (2005a) Roseovarius mucosus sp nov., a member of the Roseobacter clade with trace amounts of bacteriochlorophyll a. Int J Syst Evol Microbiol 55:2377–2383

    PubMed  CAS  Google Scholar 

  • Biebl H, Allgaier M, Tindall BJ, Koblizek M, Lunsdorf H, Pukall R, Wagner-Dobler I (2005b) Dinoroseobacter shibae gen. nov., sp nov., a new aerobic phototrophic bacterium isolated from dinoflagellates. Int J Syst Evol Microbiol 55:1089–1096

    PubMed  CAS  Google Scholar 

  • Biebl H, Tindall BJ, Pukall R, Lunsdorf H, Allgaier M, Wagner-Dobler I (2006) Hoeflea phototrophica sp nov., a novel marine aerobic alphaproteobacterium that forms bacteriochlorophyll a. Int J Syst Evol Microbiol 56:821–826

    PubMed  CAS  Google Scholar 

  • Biebl H, Pukall R, Lunsdorf H, Schulz S, Allgaier M, Tindall BJ, Wagner-Dobler I (2007) Description of Labrenzia alexandrii gen. nov., sp nov., a novel alphaproteobacterium containing bacterlochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol 57:1095–1107

    PubMed  CAS  Google Scholar 

  • Cottrell MT, Mannino A, Kirchman DL (2006) Aerobic anoxygenic phototrophic bacteria in the Mid-Atlantic Bight and the North Pacific Gyre. Appl Environ Microbiol 72:557–564

    PubMed  PubMed Central  CAS  Google Scholar 

  • DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    PubMed  CAS  Google Scholar 

  • Des Marais DJ (2000) Evolution—When did photosynthesis emerge on earth? Science 289:1703–1705

    Google Scholar 

  • Du HL, Jiao NZ, Hu YH, Zeng YH (2006) Real-time PCR for quantification of aerobic anoxygenic phototrophic bacteria based on pufM gene in marine environment. J Exp Mar Biol Ecol 329:113–121

    CAS  Google Scholar 

  • Eiler A (2006) Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. Appl Environ Microbiol 72:7431–7437

    PubMed  PubMed Central  CAS  Google Scholar 

  • Foerstner KU, von Mering C, Hooper SD, Bork P (2005) Environments shape the nucleotide composition of genomes. EMBO Rep 6:1208–1213

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs B, Spring S, Teeling H, Quast C, Wulf J, Schattenhofer M, Yan S, Ferriera S, Johnson J, Glöckner F, Amann R (2007) Characterization of the first marine gammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proc Natl Acad Sci USA 104:2891–2896

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fuhrman J, Comeau D, Hagstrom A, Chan A (1988) Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl Environ Microbiol 54:1426–1429

    PubMed  PubMed Central  CAS  Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47:345–357

    PubMed  CAS  Google Scholar 

  • Hu YH, Du HL, Jiao NZ, Zeng YH (2006) Abundant presence of the gamma-like Proteobacterial pufM gene in oxic seawater. FEMS Microbiol Lett 263:200–206

    PubMed  CAS  Google Scholar 

  • Jeffrey S, Mantoura R, Wright S (1997) Phytoplankton pigments in Oceanography. UNESCO Publishing, Paris

    Google Scholar 

  • Jiao NZ, Feng FY, Wei B (2006) Proteorhodopsin—a new path for biological utilization of light energy in the sea. Chin Sci Bull 51:889–896

    CAS  Google Scholar 

  • Jiao NZ, Zhang Y, Zeng YH, Hong N, Liu RL, Chen F, Wang PX (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ Microbiol 9:3091–3099

    PubMed  CAS  Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res Oceans, 108. doi:https://doi.org/10.1029/2000JC000736

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    PubMed  CAS  Google Scholar 

  • Koblizek M, Beja O, Bidigare RR, Christensen S, Benitez-Nelson B, Vetriani C, Kolber MK, Falkowski PG, Kolber ZS (2003) Isolation and characterization of Erythrobacter sp strains from the upper ocean. Arch Microbiol 180:327–338

    PubMed  CAS  Google Scholar 

  • Koblizek M, Masin M, Ras J, Poulton AJ, Prasil O (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9:2401–2406

    PubMed  CAS  Google Scholar 

  • Kolber ZS, Van Dover CL, Niederman RA, Falkowski PG (2000) Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179

    PubMed  CAS  Google Scholar 

  • Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, VanDover CL, Vetriani C, Koblizek M, Rathgeber C, Falkowski PG (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495

    PubMed  CAS  Google Scholar 

  • Lami R, Cottrell MT, Ras J, Ulloa O, Obernosterer I, Claustre H, Kirchman DL, Lebaron P (2007) High abundances of aerobic anoxygenic photosynthetic bacteria in the South Pacific Ocean. Appl Environ Microbiol 73:4198–4205

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martín-Cuadrado A, López-García P, Alba J, Moreira D, Monticelli L, Strittmatter A, Gottschalk G, Rodríguez-Valera F (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PloS One 2:e914

    PubMed  PubMed Central  Google Scholar 

  • Masin M, Zdun A, Ston-Egiert J, Nausch M, Labrenz M, Moulisova V, Koblizek M (2006) Seasonal changes and diversity of aerobic anoxygenic phototrophs in the Baltic Sea. Aquat Microb Ecol 45:247–254

    Google Scholar 

  • Masín M, Nedoma J, Pechar L, Koblízek M (2008) Distribution of aerobic anoxygenic phototrophs in temperate freshwater systems. Environ Microbiol 10:1988–1996

    PubMed  Google Scholar 

  • Musto H, Naya H, Zavala A, Romero H, Alvarez-Valin F, Bernardi G (2006) Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochem Biophys Res Commun 347:1–3

    PubMed  CAS  Google Scholar 

  • Odum EP (1971) Principles and concepts pertaining to organization at the community level. In: Odum EP (ed) Fundamentals of ecology. Saunders College Publishing, Philadelphia, pp 140–161

    Google Scholar 

  • Overmann J, Garcia-Pichel F (2002) The phototrophic way of life. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community [online]. Springer, New York

  • Oz A, Sabehi G, Koblizek M, Massana R, Beja O (2005) Roseobacter-like bacteria in Red and Mediterranean Sea aerobic anoxygenic photosynthetic populations. Appl Environ Microbiol 71:344–353

    PubMed  PubMed Central  CAS  Google Scholar 

  • Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63:106–127

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rathgeber C, Beatty JT, Yurkov V (2004) Aerobic phototrophic bacteria: new evidence for the diversity, ecological importance and applied potential of this previously overlooked group. Photosynth Res 81:113–128

    CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu DY, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcon LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II Global Ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PloS Biol 5:398–431

    CAS  Google Scholar 

  • Salka I, Moulisová V, Koblížek M, Jost G, Jürgens K, Labrenz M (2008) Abundance, depth distribution, and composition of aerobic bacteriochlorophyll a-producing bacteria in four basins of the central Baltic Sea. Appl Environ Microbiol. doi:https://doi.org/10.1128/AEM.02447-07

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    PubMed  PubMed Central  CAS  Google Scholar 

  • Schwalbach MS, Fuhrman JA (2005) Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol Oceanogr 50:620–628

    CAS  Google Scholar 

  • Shiba T (1991) Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a. Syst Appl Microbiol 14:140–145

    Google Scholar 

  • Shiba T, Simidu U (1982) Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a. Int J Syst Bacteriol 32:211–217

    Google Scholar 

  • Shiba T, Simidu U, Taga N (1979) Distribution of aerobic bacteria which contain bacteriochlorophyll a. Appl Environ Microbiol 38:43–45

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sieracki ME, Gilg IC, Thier EC, Poulton NJ, Goericke R (2006) Distribution of planktonic aerobic anoxygenic photoheterotrophic bacteria in the northwest Atlantic. Limnol Oceanogr 51:38–46

    Google Scholar 

  • Suzuki T, Muroga Y, Takahama M, Nishimura Y (2000) Roseibium denhamense gen. nov., sp, nov and Roseibium hamelinense sp nov., aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156

    PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    PubMed  CAS  Google Scholar 

  • Trujillo A, Thurman H (2004) Essentials of oceanography. Prentice Hall, Chicago

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    PubMed  CAS  Google Scholar 

  • Waidner LA, Kirchman DL (2005) Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 7:1896–1908

    PubMed  CAS  Google Scholar 

  • Waidner LA, Kirchman DL (2007) Aerobic anoxygenic phototrophic bacteria attached to particles in turbid waters of the Delaware and Chesapeake estuaries. Appl Environ Microbiol 73:3936–3944

    PubMed  PubMed Central  CAS  Google Scholar 

  • Waidner LA, Kirchman DL (2008) Diversity and distribution of ecotypes of the aerobic anoxygenic phototrophy gene, pufM, in the Delaware estuary. Appl Environ Microbiol 74:4012–4021

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yurkov VV, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment–protein complexes. J Bacteriol 181:4517–4525

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yutin N, Suzuki MT, Beja O (2005) Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl Environ Microbiol 71:8958–8962

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Beja O (2007) Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol 9:1464–1475

    PubMed  CAS  Google Scholar 

  • Zeng YH, Jiao NZ (2007) Source environment feature related phylogenetic distribution pattern of anoxygenic photosynthetic bacteria as revealed by pufM analysis. J Microbiol 45:205–212

    PubMed  CAS  Google Scholar 

  • Zeng YH, Jiao NZ, Cai HY, Chen XH, Wei CL (2004) Phylogenetic diversity of ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit genes of bacterioplankton in the East China Sea. Acta Oceanol Sin 23:673–685

    CAS  Google Scholar 

  • Zeng YH, Chen XH, Jiao NZ (2007) Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett Appl Microbiol 45:639–645

    PubMed  CAS  Google Scholar 

  • Zhang Y, Jiao N (2007) Dynamics of aerobic anoxygenic phototrophic bacteria in the East China Sea. FEMS Microbiol Ecol 61:459–469

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ning Hong for the help in sampling. This work was supported by the NSFC project (40632013), the MOST projects (2007CB815900 and 2006BAC11B04), the AOMRRD’s 11th 5-year programme (DYXM-115-02-4-3), the MOE project (704029) and the SOA project (200805068). The experiments comply with current Chinese laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nianzhi Jiao.

Additional information

Communicated by M. Kühl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, Y., Shen, W. & Jiao, N. Genetic diversity of aerobic anoxygenic photosynthetic bacteria in open ocean surface waters and upper twilight zones. Mar Biol 156, 425–437 (2009). https://doi.org/10.1007/s00227-008-1095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-1095-8

Keywords

Navigation