Marine Biology

, Volume 156, Issue 2, pp 205–223 | Cite as

Depth-related shift in life history strategies of a brooding and broadcasting deep-sea asteroid

  • Annie MercierEmail author
  • Jean-François Hamel
Original Paper


Combining field and laboratory work, this study investigated the reproductive cycle, aggregative behavior, spawning periodicity, development and early growth of the sea star Henricia lisa living at bathyal depths off eastern Canada. Marked differences were found between individuals from ~1,300 and ~600 m deep. The former had a male biased sex ratio and an aperiodic reproductive cycle, whereas the latter displayed an equal sex ratio and a biannual breeding pattern. Furthermore, the maximum size was larger and female fecundity roughly five times higher in shallower compared to deeper populations. In the tanks, aggregative behavior was recorded twice a year during the summer and winter breeding periods. The onset of aggregations and spawning coincided with a temperature of 3–4°C. Males spawned first and females typically responded inside 30–60 min. Between 12 and 20 eggs were retained to be brooded under the arched arms of the female, whereas the remainder were broadcasted and developed without parental care. The fertilized eggs underwent a first cleavage after 12 h, reached the brachiolaria stage in 1 month, became juveniles within 3–4 months and reached ~ 4 mm in diameter after 14–17 months of growth. The embryos and juveniles developed at the same rate whether brooded or not, and development of winter cohorts was typically slower due to lower prevailing temperatures. This study of H. lisa provides the first evidence of lecithotrophy in a seasonally breeding deep-sea echinoderm and of brooding in a deep-sea asteroid.


Gonad Index Vitellogenic Oocyte Aggregative Behavior Gamete Release Mature Gamete 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We extend our sincere thanks to the scientific staff of the Department of Fisheries and Oceans and to the Canadian Coast Guard (St John’s) for helping us with sampling on board of the CCGS Teleost, CCGS Templeman and CCGS Hudson, as well as to the ROPOS team for ROV operations. We are also grateful to M. Byrne and two anonymous reviewers for comments on the manuscript. This research was partly funded by grants from the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation to A. Mercier.


  1. Benitez-Villalobos F, Diaz-Martínez JP, Tyler PA (2007) Biología reproductiva del asteroideo de mar profundo Henricia abyssicola en el Atlántico NE. Cienc Mar 33:49–58CrossRefGoogle Scholar
  2. Blankley WO, Branch GM (1984) Co-operative prey capture and unusual brooding habits of Anasterias rupicola (Verrill) (Asteroidea) at sub-antarctic Marion Island South Africa. Mar Ecol Prog Ser 20:171–176. doi: CrossRefGoogle Scholar
  3. Byrne M (1996) Viviparity and intragonadal cannibalism in the diminutive sea stars Patiriella vivipara and P. parvivipara (family Asterinidae). Mar Biol (Berl) 125:551–567Google Scholar
  4. Byrne M (2005) Viviparity in the sea star Cryptasterina hystera (Asterinidae)—conserved and modified features in reproduction and development. Biol Bull 208:81–91. doi: CrossRefGoogle Scholar
  5. Byrne M, Hart MW, Cerra A, Cisternas P (2003) Reproduction and larval morphology of broadcasting and viviparous species in the Cryptasterina species complex. Biol Bull 205:285–294. doi: CrossRefGoogle Scholar
  6. Chia F-S (1966) Brooding behavior of a six-rayed starfish, Leptasterias hexactis. Biol Bull 130:304–315CrossRefGoogle Scholar
  7. Chia F-S (1968) Some observations on the development and cyclic changes of the oocytes in a brooding starfish, Leptasterias hexactis. J Zool 154:453–461CrossRefGoogle Scholar
  8. Chia F-S (1976) Reproductive biology of an intra ovarian brooding starfish Patiriella vivipara. Am Zool 16:181Google Scholar
  9. Chia F-S, Walker CW (1991) Echinodermata: Asteroidea. In: Giese A, Pearse J, Pearse V (eds) Reproduction of marine invertebrates, vol VI. Boxwood Press, California, pp 301–353Google Scholar
  10. Clark AM, Downey ME (1992) Starfishes of the Atlantic. Chapman and Hall, LondonGoogle Scholar
  11. Dartnall AJ, Byrne M, Collins J, Hart MW (2003) A new viviparous species of asterinid (Echinodermata, Asteroidea, Asterinidae) and a new genus to accommodate the species of pan-tropical exiguoid sea stars. Zootaxa 359:1–14CrossRefGoogle Scholar
  12. Fisher WK (1917) Notes on Asteroidea. Ann Mag Nat Hist 8:166–172CrossRefGoogle Scholar
  13. Gemmill JF (1916) Notes on the development of the starfishes Asterias glacialis O. F. M.; Cribrella oculata (Linck) Forbes; Solaster endeca (Retzius) Forbes; Stichaster roseus (O. F. M.) Sars. Proc Zool Soc Lond 39:553–565Google Scholar
  14. Giese AC, Pearse JS, Pearse VB (1991) Reproduction of Marine Invertebrates, Echinoderms and Lophophorates, vol 6. Boxwood Press, CaliforniaGoogle Scholar
  15. Gillespie JM, McClintock JB (2007) Brooding in echinoderms: how can modern experimental techniques add to our historical perspective? J Exp Mar Biol Ecol 342:191–201. doi: CrossRefGoogle Scholar
  16. Hamel J-F, Himmelman JH, Dufresne L (1993) Gametogenesis and spawning of the sea cucumber Psolus fabricii (Duben and Koren). Biol Bull 184:125–143. doi: CrossRefGoogle Scholar
  17. Hamel J-F, Mercier A (1995) Prespawning behavior, spawning, and development of the brooding starfish Leptasterias polaris. Biol Bull 188:32–45. doi: CrossRefGoogle Scholar
  18. Hamel J-F, Mercier A (1996a) Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea). Can J Fish Aquat Sci 53:253–271. doi: CrossRefGoogle Scholar
  19. Hamel J-F, Mercier A (1996b) Evidence of chemical communication during the gametogenesis of holothuroids. Ecology 77:1600–1616. doi: CrossRefGoogle Scholar
  20. Hamel J-F, Mercier A (1999) Mucus as a mediator of gametogenic synchrony in the sea cucumber Cucumaria frondosa (Holothuroidea: Echinodermata). J Mar Biol Assoc UK 79:121–129. doi: CrossRefGoogle Scholar
  21. Hansen B (1968) Brood-protection in a deep-sea holothurian, Oneirophanta mutabills Théel. Nature 217:1062–1063. doi: CrossRefGoogle Scholar
  22. Hart MW, Scheibling RE (1988) Heat waves, baby booms, and the destruction of kelp beds by sea urchins. Mar Biol (Berl) 99:167–176. doi: CrossRefGoogle Scholar
  23. Hart MW, Byrne M, Smith MJ (1997) Molecular phylogenetic analysis of life-history evolution in asterinid starfish. Evol Int J Org Evol 51:1848–1861. doi: CrossRefGoogle Scholar
  24. Hart MW, Byrne M, Johnson SL (2003) Patiriella pseudoexigua (Asteroidea: Asterinidae): a cryptic species complex revealed by molecular and embryological analyses. J Mar Biol Assoc UK 83:1109–1116. doi: CrossRefGoogle Scholar
  25. Hendler G, Meyer DL (1982) Ophiuroids flagrante delicto and notes on the spawning behavior of other echinoderms in their natural habitat. Bull Mar Sci 32:600–607Google Scholar
  26. Himmelman JH, Lavergne Y, Cardinal A, Martel G, Jalbert P (1982) Brooding behavior of the northern sea star Leptasterias polaris. Mar Biol (Berl) 68:235–240. doi: CrossRefGoogle Scholar
  27. Hyman LH (1955) The Invertebrates, Echinodermata, vol 4. McGraw-Hill, New YorkGoogle Scholar
  28. Kanatani H, Shirai H (1968) Does GSS or MIS act as a pheromone? Problems concerning the participation of a pheromone in starfish spawning. Zool Mag 77:207–212Google Scholar
  29. Komatsu M (1983) Development of the sea star Archaster typicus with a note on male on female superposition. Annot Zool Jpn 56:187–195Google Scholar
  30. Komatsu M, Kano YT, Oguro C (1990) Development of a true ovoviviparous sea star, Asterina pseudoexigua pacifica Hayashi. Biol Bull 179:254–263. doi: CrossRefGoogle Scholar
  31. Kubo K (1951) Some observations of the development of the sea-star Leptasterias ochotensis smilispinus (Clark). J Fac Sci Hokkaido Univ Ser VI Zool 10:97–105Google Scholar
  32. Levitan DR (1991) Influence of body size and population density on fertilization success and reproductive output in a free-spawning invertebrate. Biol Bull 181:261–268. doi: CrossRefGoogle Scholar
  33. Levitan DR (1992) Life history implications of sperm limitation in free-spawning organisms. Bull Ecol Soc Am 73:248CrossRefGoogle Scholar
  34. Lewis JB (1958) The biology of the tropical sea urchin Tripneustes esculentus Leske in Barbados, British West Indies. Can J Zool 36:607–621CrossRefGoogle Scholar
  35. Lieberkind I (1920) On a star-fish (Asterias groenlandica) which hatches its young in its stomach. Vidensk Medd Dan Naturhist Foren 72:121–126Google Scholar
  36. Lieberkind I (1926) Ctenodiscus australis Lütken. A brood-protecting asteroid. Vidensk Medd Dan Naturhist Foren 82:183–196Google Scholar
  37. Lund DC, Lynch-Stieglitz J, Curry WB (2006) Gulf Stream density structure and transport during the past millennium. Nature 444:601–604CrossRefGoogle Scholar
  38. Madsen FJ (1987) The Henricia sanguinolenta complex (Echinodermata, Asteroidea) of the Norwegian Sea and adjacent waters: a re-evaluation, with notes on related species. Steenstrupia (Cph) 13:201–268Google Scholar
  39. Mah CL (2006) A new species of Xyloplax (Echinodermata: Asteroidea: Concentricycloidea) from the northeast Pacific: comparative morphology and a reassessment of phylogeny. Invertebr Biol 125:136–153. doi: CrossRefGoogle Scholar
  40. Masterman AT (1902) The early development of Cribrella oculata (Forbes), with remarks on echinoderm development. Trans R Soc Edinb 40:373–418CrossRefGoogle Scholar
  41. McClary DJ, Mladenov PV (1988) Brood and broadcast: a novel mode of reproduction in the sea star Pteraster militaris. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology; sixth international echinoderm conference. Balkema, Rotterdam, pp 163–168Google Scholar
  42. McClary DJ, Mladenov PV (1989) Reproductive pattern in the brooding and broadcasting sea star Pteraster militaris. Mar Biol (Berl) 103:531–540. doi: CrossRefGoogle Scholar
  43. McEuen FS (1988) Spawning behaviors of northeast Pacific sea cucumbers (Holothuroidea: Echinodermata). Mar Biol (Berl) 98:565–585. doi: CrossRefGoogle Scholar
  44. Mercier A, Battaglene SC, Hamel J-F (2000) Periodic movement, recruitment and size-related distribution of the sea cucumber Holothuria scabra in Solomon Islands. Hydrobiologia 440:81–100. doi: CrossRefGoogle Scholar
  45. Mileikovsky SA (1971) Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol (Berl) 10:193–213. doi: CrossRefGoogle Scholar
  46. Minchin D (1987) Sea-water temperature and spawning behavior in the sea star Marthasterias glacialis. Mar Biol (Berl) 95:139–144. doi: CrossRefGoogle Scholar
  47. Ohshima H, Ikeda H (1934) Male-female superposition of the sea-star Archaster typicus Müll. et Trosch. Zool Lab Kyushu Imperial Univ 54:125–128Google Scholar
  48. Ormond RFG, Campbell AC, Head SH, Moore RJ, Rainbow PR, Saunders AP (1973) Formation and breakdown of aggregations of the crown-of-thorns starfish Acanthaster planci. Nature 246:167–169. doi: CrossRefGoogle Scholar
  49. Orton JH (1920) Sea temperature, breeding and distribution in marine animals. J Mar Biol Assoc UK 12:339–366CrossRefGoogle Scholar
  50. Osterud HL (1918) Preliminary observations on the development of Leptasterias hexactis. Publs Puget Sound Mar Biol Stn 2:1–15Google Scholar
  51. Pain SL, Tyler PA, Gage JD (1982) The reproductive biology of Hymenaster membranaceus from the Rockall Trough, north-east Atlantic Ocean, with notes on H. gennaeus. Mar Biol (Berl) 70:41–50. doi: CrossRefGoogle Scholar
  52. Pearse JS, Cameron RA (1991) Echinodermata: Echinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. , VIBoxwood Press, California, pp 513–662Google Scholar
  53. Pearse JS, McClary DJ, Sewell MA, Austin WC, Perez-Ruzafa A, Byrne M (1988) Simultaneous spawning of six species of echinoderms in Barkley Sound, British Columbia, Canada. Int J Inver Rep Dev 14:279–288CrossRefGoogle Scholar
  54. Pradillon F, Shillito B, Young CM, Gaill F (2001) Deep-sea ecology: developmental arrest in vent worm embryos. Nature 413:698–699. doi: CrossRefGoogle Scholar
  55. Ramirez-Llodra E, Tyler PA, Billett DSM (2002) Reproductive biology of porcellanasterid asteroids from three abyssal sites in the northeast Atlantic with contrasting food input. Mar Biol (Berl) 140:773–788. doi: CrossRefGoogle Scholar
  56. Rex MA (1979) r-and K-selection in a deep-sea gastropod. Sarsia 64:29–32CrossRefGoogle Scholar
  57. Rowe FWE (1988) The morphology, development and taxonomic status of Xyloplax Baker, Rowe and Clark (1986) (Echinodermata: Concentricycloidea), with the description of a new species. Proc R Soc Lond B Biol Sci 233:431–459. doi: CrossRefGoogle Scholar
  58. Run JQ, Chen CP, Chang KH, Chia FS (1988) Mating behavior and reproductive cycle of Archaster typicus (Echinodermata: Asteroidea). Mar Biol (Berl) 99:247–254. doi: CrossRefGoogle Scholar
  59. Sars M (1844) Uber die Entwicklung der Seesterne. Arch Naturgesch 10:169–178Google Scholar
  60. Scheltema RS (1972) Reproduction and dispersal of bottom dwelling deep-sea invertebrates: a speculative summary. In: Bauer RW (ed) Barobiology and the experimental biology of the deep sea. University of North Carolina, Chapel Hill, pp 56–68Google Scholar
  61. Sheild CJ, Witman JD (1993) The impact of Henricia sanguinolenta (O. F. Mueller) (Echinodermata: Asteroidea) predation on the finger sponges, Isodictya spp. J Exp Mar Biol Ecol 166:107–133. doi: CrossRefGoogle Scholar
  62. Slattery M, Bosch I (1993) Mating behavior of a brooding Antarctic asteroid, Neosmilaster georgianus. Invertebr Reprod Dev 24:97–102CrossRefGoogle Scholar
  63. Sloan NA (1980) Aspects of the feeding biology of asteroids. Oceanogr Mar Biol Ann Rev 18:57–124Google Scholar
  64. Sloan NA (1984) Interference and aggregation close encounters of the starfish kind. Ophelia 23:23–32CrossRefGoogle Scholar
  65. Sloan NA, Campbell AC (1982) Perception of food. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 3–23Google Scholar
  66. Stanwell-Smith D, Peck LS (1998) Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms. Biol Bull 194:44–52. doi: CrossRefGoogle Scholar
  67. Starr M, Himmelman JH, Therriault J-C (1990) Direct coupling of marine invertebrate spawning with phytoplankton blooms. Science 247:1071–1074. doi: CrossRefGoogle Scholar
  68. Stein M (2007) Oceanography of the Flemish Cap and adjacent waters. J Northwest Atl Fish Sci 37:135–146. doi: CrossRefGoogle Scholar
  69. Strathmann RR, Strathmann MF (1982) The relationship between adult size and brooding in marine invertebrates. Am Nat 119:91–101. doi: CrossRefGoogle Scholar
  70. Strathmann RR, Strathmann MF, Emson RH (1984) Does limited brood capacity link adult size, brooding, and simultaneous hermaphroditism? A test with the starfish Asterina phylactica. Am Nat 123:796–818. doi: CrossRefGoogle Scholar
  71. Thatje S, Shillito B, Hauton C D. B, Tyler P (2006) Discovering the unknown: experimental laboratory studies in deep-sea organisms Book of abstracts. In: 11th international deep-sea biology symposium. Southampton, UK, pp 161–162Google Scholar
  72. Thorson G (1946) Reproduction and larval development of Danish marine bottom invertebrates. Meddr Kommn Danm Fisk-og Havunders 4:1–523 Ser PlanktonGoogle Scholar
  73. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev Camb Philos Soc 25:1–45. doi: CrossRefGoogle Scholar
  74. Tyler PA, Pain SL (1982) The reproductive biology of Plutonaster bifrons, Dytaster insignis and Psilaster andromeda (Asteroidea: Astropectinidae) from the Rockall Trough. J Mar Biol Assoc U K 62:869–887CrossRefGoogle Scholar
  75. Tyler PA, Billett DSM, Gage JD (1990) Seasonal reproduction in the sea star Dytaster grandis from 4000 m in the northeast Atlantic Ocean. J Mar Biol Assoc UK 70:173–180CrossRefGoogle Scholar
  76. Tyler PA, Gage JD, Paterson GJL, Rice AL (1993) Dietary constraints on reproductive periodicity in two sympatric deep-sea astropectinid seastars. Mar Biol (Berl) 115:267–277. doi: CrossRefGoogle Scholar
  77. Tyler PA, Pain SL, Gage JD, Billett DSM (1984) The reproductive biology of deep-sea forcipulate seastars (Asteroidea: Echinodermata) from the N.E. Atlantic Ocean. J Mar Biol Assoc UK 64:587–602CrossRefGoogle Scholar
  78. Tyler PA, Young CM (1992) Reproduction in marine invertebrates in “stable” environments: the deep sea model. Invertebr Reprod Dev 22:185–192CrossRefGoogle Scholar
  79. Warner GF (1979) Aggregation in echinoderms. In: Larwood G, Rosen BR (eds) Biology and systematics of colonial organisms. Academic Press, New York, pp 375–396Google Scholar
  80. Wigham BD, Tyler PA, Billett DSM (2003) Reproductive biology of the abyssal holothurian Amperima rosea: an opportunistic response to variable flux of surface derived organic matter? J Mar Biol Assoc UK 83:175–188CrossRefGoogle Scholar
  81. Young CM (2003) Reproduction, development and life-history traits. In: Tyler PA (ed) Ecosystems of the deep oceans. Ecosystems of the world, vol 28. Elsevier, AmsterdamGoogle Scholar
  82. Young CM, Cameron JL (1987) Laboratory and in situ flotation rates of lecithotrophic eggs from the bathyal echinoid Phormosoma placenta. Deep Sea Res Part I Oceanogr Res Pap 34:1629–1639. doi: CrossRefGoogle Scholar
  83. Young CM, Cameron JL (1989) Developmental rate as a function of depth in the bathyal echinoid Linopneustes longispinus. In: Ryland JS, Tyler PA (eds) Reproduction, genetics and distributions of marine organisms. Olsen and Olsen, Fredensborg, pp 225–231Google Scholar
  84. Young CM, Cameron JL, Eckelbarger KJ (1989) Extended pre-feeding period in the planktotrophic larvae of the bathyal echinoid Aspidodiadema jacobyi. J Mar Biol Assoc UK 69:695–702CrossRefGoogle Scholar
  85. Young CM, George SB (2000) Larval development of the tropical deep-sea echinoid Aspidodiadema jacobyi: phylogenetic implications. Biol Bull 198:387–395. doi: CrossRefGoogle Scholar
  86. Young CM, Tyler PA (1993) Embryos of the deep-sea echinoid Echinus affinis require high pressure for development. Limnol Oceanogr 38:178–181CrossRefGoogle Scholar
  87. Young CM, Tyler PA, Cameron JL, Rumrill SG (1992) Seasonal breeding aggregations in low-density populations of the bathyal echinoid Stylocidaris lineata. Mar Biol (Berl) 113:603–612. doi: CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Ocean Sciences Centre (OSC)Memorial UniversitySt John’sCanada
  2. 2.Society for the Exploration and Valuing of the Environment (SEVE)Portugal Cove-St PhilipsCanada

Personalised recommendations