Marine Biology

, Volume 155, Issue 6, pp 649–660 | Cite as

Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata

  • Paulina KaniewskaEmail author
  • Kenneth R. N. Anthony
  • Ove Hoegh-Guldberg
Original Paper


Colonial photosynthetic marine organisms often exhibit morphological phenotypic plasticity. Where such plasticity leads to an improved balance between rates of photosynthesis and maintenance costs, it is likely to have adaptive significance. To explore whether such phenotypic plasticity leads to more favourable within-colony irradiance for reef-building branching corals, this relationship was investigated for two coral species Acropora humilis and Stylophora pistillata, along a depth gradient representing light habitats ranging from 500 to 25 μmol photons m−2 s−1, during 2006 at Heron Island, Great Barrier Reef (23.44°S, 151.91°E). In the present study changes in flow-modulated mass transfer co-varied with light as a function of depth. In low-light (deep) habitats, branch spacing (colony openness) in A. humilis and S. pistillata was 40–50% greater than for conspecifics in high-light environments. Also, branches of A. humilis in deep water were 40–60% shorter than in shallow water. Phenotypic changes in these two variables lead to steeper within-colony light attenuation resulting in 38% higher mean internal irradiance (at the tissue surface) in deep colonies compared to shallow colonies. The pattern of branch spacing was similar for S. pistillata, but this species displayed an alternate strategy with respect to branch length: shade adapted deep and cave colonies developed longer and thinner branches, allowing access to higher mass transfer and irradiance. Corals in cave habitats allowed 20% more irradiance compared to colonies found in the deep, and had a 47% greater proportion of irradiance compared to colonies in the shallow high-light environment. Such phenotypic regulation of internal light levels on branch surfaces partly explains the broad light niches of many branching coral species.


Coral Species Light Attenuation Coral Coloni Symbiotic Dinoflagellate Plaster Ball 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by funding from the Australian Research Council and University of Queensland. We thank P. Campbell, L, Franceschinis, N. Kongjandtre, A. Gallenne, M. Stock, A. Diaz-Ruiz and G. Holmes for assistance with fieldwork and two anonymous reviewers for comments on the manuscript. This is a contribution from the ARC Centre of Excellence for Coral Reef Studies.

Supplementary material

227_2008_1061_MOESM1_ESM.tif (671 kb)
Non-linear and linear regression summary for exponential and linear irradiance models for Acropora humilis and Stylophora pistillata irradiance profiles at Harry's Bommie (HB) and Tenements (T). Estimated coefficients are presented as means with the standard error of the mean given in parentheses (n=15), where I(d) is irradiance at position d along the branch, I(o) is the maximum irradiance at the tip of the branch and b is a coefficient indicating the steepness of the light attenuation. (TIFF 671 kb)


  1. Anthony KRN, Hoegh-Guldberg O (2003a) Variation in coral photosynthesis, respiration and growth characteristics in contrasting light microhabitats: an analogue to plants in forest gaps and understoreys? Funct Ecol 17:246–259. doi: 10.1046/j.1365-2435.2003.00731.x CrossRefGoogle Scholar
  2. Anthony KRN, Hoegh-Guldberg O (2003b) Kinetics of coral photoacclimation. Oecologia 134:23–31. doi: 10.1007/s00442-002-1095-1 CrossRefGoogle Scholar
  3. Anthony KRN, Connolly SR (2004) Environmental limits to growth: physiological niche boundaries of corals along turbidity-light gradients. Oecologia 141:373–384. doi: 10.1007/s00442-004-1647-7 CrossRefGoogle Scholar
  4. Anthony KRN, Hoogenboom MO, Connolly SR (2005) Adaptive variation in coral geometry and the optimization of internal colony light climates. Funct Ecol 19:17–26. doi: 10.1111/j.0269-8463.2005.00925.x CrossRefGoogle Scholar
  5. Atkinson MJ, Bilger RW (1992) Effects of water velocity on phosphate uptake in coral reef-flat communities. Limnol Oceanogr 37:273–279CrossRefGoogle Scholar
  6. Brakel WH (1983) Depth-related changes in the colony form of the reef coral Porites astreoides. The ecology of deep and shallow reefs. Symp Ser Undersea Res 1:21–26Google Scholar
  7. Brown BE, Ambarsari I, Warner ME, Fitt WK, Dunne RP, Gibb SW et al (1999) Diurnal changes in photochemical efficiency and xanthophyll concentrations in shallow water reef corals: evidence for photoinhibition and photo-protection. Coral Reefs 18:99–105. doi: 10.1007/s003380050163 CrossRefGoogle Scholar
  8. Bruno JF, Edmunds PJ (1997) Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology 78:2177–2190CrossRefGoogle Scholar
  9. Bruno JF, Edmunds PJ (1998) Metabolic consequences of phenotypic plasticity in the coral Madracis mirabilis (Duchassaing & Michelotti): the effect of morphology and water flow on aggregate respiration. J Exp Mar Biol Ecol 229:187–195. doi: 10.1016/S0022-0981(98)00050-1 CrossRefGoogle Scholar
  10. Chalker BE, Dunlap WC, Oliver JK (1983) Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. II. Light saturation curves for photosynthesis and respiration. J Exp Mar Biol Ecol 73:37–56. doi: 10.1016/0022-0981(83)90004-7 CrossRefGoogle Scholar
  11. Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Biol Ecol 115:67–77. doi: 10.1016/0022-0981(88)90190-6 CrossRefGoogle Scholar
  12. Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116. doi: 10.3354/meps272099 CrossRefGoogle Scholar
  13. Dove S, Ortiz JC, Enriquez S, Fine M, Fisher P, Iglesias-Prieto R et al (2006) Response of holosymbiont pigments from the scleractinian coral Monipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158CrossRefGoogle Scholar
  14. Dubinsky Z, Jokiel P (1994) The ratio of energy and nutrient fluxes regulates the symbiosis between zooxanthellae and corals. Pac Sci 48:313–324Google Scholar
  15. Dubinsky Z, Falkowski PG, Porter JW, Muscatine L (1984) Absorption and utilization of radiant energy by light and shade-adapted colonies of the hermatypic coral Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:203–214CrossRefGoogle Scholar
  16. Dustan P (1975) Growth and form in the reef-building coral Montastrea annularis. Mar Biol (Berl) 33:101–107. doi: 10.1007/BF00390714 CrossRefGoogle Scholar
  17. Enriquez S, Pantoja-Reyes NI (2005) Form-function analysis of the effect of canopy morphology on leaf self-shading in the seagrass Thalassia testudinum. Oecologia 145:235–243. doi: 10.1007/s00442-005-0111-7 CrossRefGoogle Scholar
  18. Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032CrossRefGoogle Scholar
  19. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174. doi: 10.1038/289172a0 CrossRefGoogle Scholar
  20. Falkowski PG, Raven JA (1997) Aquatic photosynthesis. Blackwell Science, MaldenGoogle Scholar
  21. Falkowski PG, Jokiel PL, Kinzie RAIII (1990) Irradiance and corals. Coral Reefs 25:89–107Google Scholar
  22. Fabricius KE, Genin A, Benayahu Y (1995) Flow-dependent herbivory and growth in zooxanthellae-free soft corals. Limnol Oceanogr 40:1290–1301CrossRefGoogle Scholar
  23. Fulton CJ, Bellwood DR (2005) Wave induced water motion and the functional implications for coral reef fish assemblages. Limnol Oceanogr 50:255–264CrossRefGoogle Scholar
  24. Goreau TF (1959) The ecology of Jamaican coral reefs I. Species composition and zonation. Ecology 40:67–90. doi: 10.2307/1929924 CrossRefGoogle Scholar
  25. Graus RR, Macintyre IG (1976) Control of growth form in colonial corals: computer simulation. Science 193:895–897. doi: 10.1126/science.193.4256.895 CrossRefGoogle Scholar
  26. Graus RR, Macintyre IG (1982) Variation in growth forms of the reef coral Montastrea annularis (Ellis & Solander): A quantitative evaluation of growth response to light distribution using computer simulation. Smithson Contrib Mar Sci 12:441–464Google Scholar
  27. Helmuth BS, Sebens KP, Daniel TL (1997) Morphological variation in coral aggregations: branch spacing and mass flux to coral tissues. J Exp Mar Biol Ecol 209:233–259. doi: 10.1016/S0022-0981(96)02687-1 CrossRefGoogle Scholar
  28. Herbert TJ (1996) On the relationship of plant geometry to photosynthetic response. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, London, pp 139–161CrossRefGoogle Scholar
  29. Hoogenboom MO, Anthony KRN, Connolly SR (2006) Energetic cost of photoinhibition in corals. Mar Ecol Prog Ser 313:1–12. doi: 10.3354/meps313001 CrossRefGoogle Scholar
  30. Hoogenboom MO, Anthony KRN, Connolly SR (2008) Energetic implications of phenotypic plasticity in foliose corals. Ecology (in press)Google Scholar
  31. Jaubert J (1981) Variations of the shape and of the chlorophyll concentration of the scleractinian coral Synaraea convexa Verrill: Two complementary processes to adapt to light variations. Proc of the 4th Int Coral Reef Symp 2:55–58Google Scholar
  32. Jokiel PL, Morrissey JI (1993) Water motion on coral reefs: evaluation of the clod-card technique. Mar Ecol Prog Ser 93:175–181. doi: 10.3354/meps093175 CrossRefGoogle Scholar
  33. Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in photochemical efficiency of the symbiotic dinoflagellates (Dinophyceae) of corals: photoprotection, photoactivation and the relationship to coral bleaching. Plant Cell Environ 24:89–99. doi: 10.1046/j.1365-3040.2001.00648.x CrossRefGoogle Scholar
  34. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairmentof the CO2 mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230. doi: 10.1046/j.1365-3040.1998.00345.x CrossRefGoogle Scholar
  35. Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol (Berl) 134:295–306. doi: 10.1007/s002270050547 CrossRefGoogle Scholar
  36. Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, Vermeij MJA, Maier C (2005) Morphogenesis of the branching reef coral Madracis mirabilis. Proc R Soc Biol Sci Ser B 272:127–133. doi: 10.1098/rspb.2004.2934 CrossRefGoogle Scholar
  37. Kawamata S (1998) Effect of wave-induced oscillatory flow on grazing by a subtidal sea urchin Strongylocentrotus nudus (A. Agassiz). J Exp Mar Biol Ecol 224:31–48. doi: 10.1016/S0022-0981(97)00165-2 CrossRefGoogle Scholar
  38. Kuhl M, Cohen Y, Daalsgard T, Jorgenen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172. doi: 10.3354/meps117159 CrossRefGoogle Scholar
  39. LaJeunesse TC, Bhagooli R, Hidaka M, de Ventier L, Done T, Schmidt GW et al (2004) Closely related Symbiodinium spp differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161. doi: 10.3354/meps284147 CrossRefGoogle Scholar
  40. Lesser MP, Weis VM, Patterson MR, Jokiel PL (1994) Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): Diffusion barriers, inorganic carbon limitation, and biochemical plasticity. J Exp Mar Biol Ecol 178:153–179. doi: 10.1016/0022-0981(94)90034-5 CrossRefGoogle Scholar
  41. Levy O, Achituv Y, Yacobi YZ, Stambler N, Dubinsky Z (2006) The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J Exp Mar Biol Ecol 328:35–46. doi: 10.1016/j.jembe.2005.06.018 CrossRefGoogle Scholar
  42. Madin JS, Connolly SR (2006) Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444:477–480. doi: 10.1038/nature05328 CrossRefGoogle Scholar
  43. Mass T, Einbinder S, Brokovich E, Shashar N, Vago, Erez J, Dubinsky Z (2007) Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar Ecol Prog Ser 334:93–102. doi: 10.3354/meps334093 CrossRefGoogle Scholar
  44. Muko S, Kawasaki K, Sakai K (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239Google Scholar
  45. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbiosis adapted to nutrient-poor environments. Bioscience 27:454–460. doi: 10.2307/1297526 CrossRefGoogle Scholar
  46. Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light-adapted and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:181–202CrossRefGoogle Scholar
  47. Patterson MR, Sebens KP, Olson RR (1991) In situ measurement of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948CrossRefGoogle Scholar
  48. Pearcy RW, Yang W (1996) A three-dimensional crown architecture model for assessment of light capture and carbon gain by understory plants. Oecologia 108:1–12. doi: 10.1007/BF00333208 CrossRefGoogle Scholar
  49. Pearcy RW, Yang W (1998) The functional morphology of light capture and carbon gain in the redwood forest understorey plant Adenocaulon bicolor. Funct Ecol 12:543–552. doi: 10.1046/j.1365-2435.1998.00234.x CrossRefGoogle Scholar
  50. Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800. doi: 10.1111/j.1469-8137.2005.01328.x CrossRefGoogle Scholar
  51. Porter JW, Muscatine L, Dubinsky Z, Falkowski PG (1984) Primary production and photoadaptaion in light- and shade-adapted colonies of the symbiotic coral, Stylophora pistillata. Proc R Soc Biol Sci Ser B 222:161–180CrossRefGoogle Scholar
  52. Porter ET, Sanford LP, Suttles SE (2000) Gypsum dissolution is not a universal integrator of “water motion”. Limnol Oceanogr 45:145–158CrossRefGoogle Scholar
  53. Ralph PJ, Gademann R, Larkum AWD, Kuhl M (2002) Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues. Mar Biol (Berl) 141:639–646. doi: 10.1007/s00227-002-0866-x CrossRefGoogle Scholar
  54. Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202. doi: 10.3354/meps062185 CrossRefGoogle Scholar
  55. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733. doi: 10.1111/j.1365-294X.2007.03403.x CrossRefGoogle Scholar
  56. Sebens KP (1997) Adaptive responses to water flow: Morphology, energetics, and distribution of reef corals. Proc 8th Int Coral Reef Symp 2:1053–1058Google Scholar
  57. Sebens KP, Witting J, Helmuth B (1997) Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). J Exp Mar Biol Ecol 211:1–28. doi: 10.1016/S0022-0981(96)02636-6 CrossRefGoogle Scholar
  58. Shick JM, Lesser MP, Jokiel PL (1996) Ultraviolet radiation and coral stress. Glob Change Biol 2:527–545. doi: 10.1111/j.1365-2486.1996.tb00065.x CrossRefGoogle Scholar
  59. Thomas F, Atkinson MJ (1997) Ammonium uptake by coral reefs: effects of water velocity and surface roughness on mass transfer. Limnol Oceanogr 42:81–88CrossRefGoogle Scholar
  60. Titlyanov EA, Titlyanova TV (2002) Reef-building corals–symbiotic autotrophic organisms: 2 Pathways and mechanisms of adaptation to light. Russ J Mar Biol 28(Supplement 1):S16–S31. doi: 10.1023/A:1021833821493 CrossRefGoogle Scholar
  61. Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. J Exp Mar Biol Ecol 263:211–225. doi: 10.1016/S0022-0981(01)00309-4 CrossRefGoogle Scholar
  62. Ulstrup KE, Berkelmans R, Ralph PJ, van Oppen MJH (2006) Variation in bleaching sensitivity of two coral species across a latitudinal gradient on the Great Barrier Reef: the role of zooxanthellae. Mar Ecol Prog Ser 314:135–148. doi: 10.3354/meps314135 CrossRefGoogle Scholar
  63. Vermeij MJA, Bak RPM (2002) How are coral populations structured by light? Marine light regimes and the distribution of Madracis. Mar Ecol Prog Ser 233:105–116. doi: 10.3354/meps233105 CrossRefGoogle Scholar
  64. Veron JEN (1995) Corals in time and space. Cornell University Press, IthacaGoogle Scholar
  65. Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  66. Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH (1995) Adaptive phenotpic plasticity: consensus and controversy. Trends Ecol Evol 10:212–217. doi: 10.1016/S0169-5347(00)89061-8 CrossRefGoogle Scholar
  67. Wallace CC (1999) Staghorn corals of the World: a revision of the coral genus Acropora. CSIRO Publishing, CollingwoodGoogle Scholar
  68. Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proc 5th Int Coral Reef Symp 4:107–112Google Scholar
  69. Winters G, Loya Y, Roettgers R, Beer S (2003) Photoinhibition in shallow-water colonies of the coral Stylophora pistillata as measured in situ. Limnol Oceanogr 48:1388–1393CrossRefGoogle Scholar
  70. Wolstenholme JK, Wallace CC, Chen CA (2003) Species boundaries within the Acropora humilis species group (Cnidaria; Scleractinia): a morphological and molecular interpretation of evolution. Coral Reefs 22:155–166. doi: 10.1007/s00338-003-0299-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Paulina Kaniewska
    • 1
    Email author
  • Kenneth R. N. Anthony
    • 1
  • Ove Hoegh-Guldberg
    • 1
  1. 1.Centre for Marine Studies and ARC Centre of Excellence for Coral Reef StudiesThe University of QueenslandSt LuciaAustralia

Personalised recommendations