Marine Biology

, Volume 155, Issue 6, pp 623–635 | Cite as

Is Hippolyte williamsi gonochoric or hermaphroditic? A multi-approach study and a review of sexual systems in Hippolyte shrimps

  • Nuxia L. Espinoza-Fuenzalida
  • Martin Thiel
  • Enrique Dupre
  • J. Antonio BaezaEmail author
Original Paper


Sexual systems vary considerably among caridean shrimps and while most species are gonochoric, others are described as sequential protandric hermaphrodites or simultaneous hermaphrodites with an early male phase. At present, there is confusion about the sexual system exhibited by several species mostly because those studies attempting to reveal their sexual system draw inferences solely from the distribution of the sexes across size classes. Here we investigated the sexual system of the shrimp Hippolyte williamsi from Chile to determine if the species is protandric or gonochoric with sexual dimorphism (males smaller than females). Morphological identification and size frequency distributions indicated that the population comprised small males, small immature females, and large mature females, which was confirmed by dissections. No transitional individuals were found. Males maintained in the laboratory molted 1–8 times, and many grew up to reach sizes observed in only a small fraction of males in the field. No indication of sex change was recorded. Our results indicate that H. williamsi is a sexually dimorphic gonochoric species and emphasizes the importance of using several kinds of evidence (size measurements, growth experiments, morphological dissections, and histological studies) to reveal the sexual system of Hippolyte species. Whether the observed size dimorphism between males and females in many species of Hippolyte is expression of contrasting sexual and natural selection, and whether divergent sexual fitness functions can contribute to the evolution of hermaphroditism remains to be revealed in future studies.


Focal Male Sexual System Simultaneous Hermaphrodite Hermaphroditism Caridean Shrimp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



JAB thanks for the support from a Smithsonian Tropical Research Institute (STRI) Postdoctoral Fellowship and a Smithsonian Marine Station at Fort Pierce (SMSFP) Postdoctoral Fellowship. JAB specially acknowledges support from Valerie Paul and the SMSFP for funding a field trip to Chile during which most of this manuscript was written. The constructive comments from three anonymous reviewers substantially improved the manuscript. This is contribution number 740 from the Smithsonian Marine Station at Fort Pierce.


  1. Anker A, Ahyong ST, Noel PY, Palmer AR (2006) Morphological phylogeny of alpheid shrimps: parallel preadaptation and the origin of a key morphological innovation—the snapping claw. Evolution 60:2507–2528CrossRefGoogle Scholar
  2. Baeza JA (2006) Testing three models on the adaptive significance of protandric simultaneous hermaphroditism in a marine shrimp. Evolution 60:1840–1850CrossRefGoogle Scholar
  3. Baeza JA (2007a) Male mating opportunities affect sex allocation in a protandric-simultaneous hermaphroditic shrimp. Behav Ecol Sociobiol 61:365–370. doi: 10.1007/s00265-006-0265-2 CrossRefGoogle Scholar
  4. Baeza JA (2007b) No effect of group size on sex allocation in a protandric-simultaneous hermaphroditic shrimp. J Mar Biol Assoc UK 87:1169–1174. doi: 10.1017/S0025315407057542 CrossRefGoogle Scholar
  5. Baeza JA (2008a) Protandric simultaneous hermaphroditism in the shrimps Lysmata bahia and L. intermedia. Invertebr Biol 127:181–188. doi: 10.1111/j.1744-7410.2007.00122.x CrossRefGoogle Scholar
  6. Baeza JA (2008b) Social monogamy in the shrimp Pontonia margarita, a symbiont of Pinctada mazatlantica, in the tropical eastern Pacific coast. Mar Biol (Berl) 153:387–395. doi: 10.1007/s00227-007-0815-9 CrossRefGoogle Scholar
  7. Baeza JA, Bauer RT (2004) Experimental test of socially mediated sex change in a protandric simultaneous hermaphrodite, the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae). Behav Ecol Sociobiol 55:544–550. doi: 10.1007/s00265-003-0744-7 CrossRefGoogle Scholar
  8. Baeza JA, Thiel M (2007) The mating system of symbiotic crustaceans: a conceptual model based on optimality and ecological constraints (Chapter 12). In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: crustaceans as model organisms. Oxford University Press, New York, pp 250–267CrossRefGoogle Scholar
  9. Bauer RT (1986) Sex change and life history pattern in the shrimp Thor manningi (Decapoda: Caridea): a novel case of partial protandric hermaphroditism. Biol Bull 170:11–31. doi: 10.2307/1541377 CrossRefGoogle Scholar
  10. Bauer RT (2001) Hermafroditismo en camarones: El sistema sexual y su relación con atributos socio ecológicos. Interciencia 26:434–439Google Scholar
  11. Bauer RT (2004) Remarkable shrimps: adaptations and natural history of the carideans. University of Oklahoma Press, Norman, 282 ppGoogle Scholar
  12. Bauer RT, Holt GJ (1998) Simultaneous hermaphroditism in the marine shrimp Lysmata wurdemanni (Caridea: Hippolytidae): an undescribed sexual system in the decapod Crustacea. Mar Biol (Berl) 132:223–235. doi: 10.1007/s002270050388 CrossRefGoogle Scholar
  13. Bauer RT, VanHoy R (1996) Variation in sexual systems (Protandry, Gonochorism) and reproductive biology among three species of the shrimp genus Thor (Decapoda: Caridea). Bull Mar Sci 59:53–73Google Scholar
  14. Bergström BI (2000) The biology of Pandalus. Adv Mar Biol 38:55–245Google Scholar
  15. Boddeke R, Bosschieter JR, Goudswaard PC (1991) Sex change, mating, and sperm transfer in Crangon crangon (L.) In: Bauer RT, Martin JW (eds) Crustacean sexual biology. Columbia University Press, New York, pp 164–182Google Scholar
  16. Brook HJ, Rawlings TA, Davies RW (1994) Protogynous sex change in the intertidal isopod Gnorimosphaeroma oregonense (Crustacea: Isopoda). Biol Bull 187:99–111. doi: 10.2307/1542169 CrossRefGoogle Scholar
  17. Butler TH (1964) Growth, reproduction, and distribution of pandalid shrimps in British Columbia. J Fish Res Bd Can 21:1403–1452CrossRefGoogle Scholar
  18. Butler TH (1980) Shrimps of the Pacific Coast of Canada. Can Bull Fish Aquat Sci 202:131–142Google Scholar
  19. Ceidigh PO, McGrath D (1978) The occurrence of Hippolyte huntii (Gosse, 1877), a species new to Ireland, on the west coast (Decapoda: Caridea). Crustaceana 34:108–109. doi: 10.1163/156854078X00646 CrossRefGoogle Scholar
  20. Ceidigh PO, Murray A, McGrath D (1982) Hippolyte longirostris (Czerniavsky, 1868) (Decapoda, Caridea) off the west and south east coasts of Ireland. Crustaceana 43:110–112. doi: 10.1163/156854082X00155 CrossRefGoogle Scholar
  21. Cobos V, Díaz V, García Raso JE, Manjón-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis (Decapoda, Caridea): is this species really hermaphroditic? Invertebr Biol 124:310–320. doi: 10.1111/j.1744-7410.2005.00029.x CrossRefGoogle Scholar
  22. Correa C, Thiel M (2003) Mating systems in caridean shrimp (Decapoda: Caridea) and their evolutionary consequences for sexual dimorphism and reproductive biology. Rev Chil Hist Nat 76:187–203CrossRefGoogle Scholar
  23. García Raso JE, Manjón-Cabeza ME, Martinez JC (1998) Considerations on some species of Hippolyte (Decapoda, Caridea) from southern European waters, H. niezabitowskii, H. holthuisi, and H. varians. Crustaceana 71:453–467. doi: 10.1163/156854098X00545 CrossRefGoogle Scholar
  24. Gavio MA, Orensanz JM, Amstrong D (2006) Evaluation of alternative life history hypotheses for the sand shrimp Crangon franciscorum (Decapoda: Caridea). J Crustac Biol 26:295–307. doi: 10.1651/C-2619.1 CrossRefGoogle Scholar
  25. Ghiselin MT (1974) The economy of nature and the evolution of sex. University of California Press, BerkeleyGoogle Scholar
  26. González SA (1992) Heterozostera tasmanica (Martens ex. Aschers) Den Hartog y comunidad asociada en el norte de Chile. Tesis de licenciatura, Universidad Católica del Norte, Facultad de Ciencias del Mar, pp 120Google Scholar
  27. Hacker SD, Madin LP (1991) Why habitat architecture and color are important to shrimps living in pelagic Sargassum: use of camouflage and plant-part mimicry. Mar Ecol Prog Ser 70:143–155. doi: 10.3354/meps070143 CrossRefGoogle Scholar
  28. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology: Oxford series in ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  29. Hoffman DL (1972) The development of the ovotestis and copulatory organs in a population of protandric shrimp, Pandalus platyceros Brandt from Lopez Sound, Washington. Biol Bull 142:251–270. doi: 10.2307/1540229 CrossRefGoogle Scholar
  30. Karplus I (2005) Social control of growth in Macrobrachium rosenbergii (De Man): a review and prospects for future research. Aquacult Res 36:238–254. doi: 10.1111/j.1365-2109.2005.01239.x CrossRefGoogle Scholar
  31. Koukouras A, Anastasiadou C (2002) The genus Hippolyte Leach (Decapoda, Caridea) in the Aegean and Ionian Seas. Crustaceana 75:443–449. doi: 10.1163/156854002760095507 CrossRefGoogle Scholar
  32. Noël P (1976) L’évolution des caractères sexuels chez Processa edulis Risso (Décapode, Natantia). Vie Milieu 26:65–104Google Scholar
  33. dos Santos A, Calado R, Bartilotti C, Narciso L (2004) The larval development of the partner shrimp Periclimenes sagittifer (Norman, 1861) (Decapoda: Caridea: Palaemonidae: Pontoniinae) described from laboratory-reared material, with a note on chemical settlement cues. Helgol Mar Res 58:129–139. doi: 10.1007/s10152-004-0178-2 CrossRefGoogle Scholar
  34. Schaffmeister BE, Hiddink JG, Wolff WJ (2006) Habitat use of shrimps in the intertidal and shallow subtidal seagrass beds of the tropical Banc d’Arguin, Mauritania. J Sea Res 55:230–243. doi: 10.1016/j.seares.2005.10.003 CrossRefGoogle Scholar
  35. Schatte J, Saborowski R (2006) Change of external sexual characteristics during consecutive moults in Crangon crangon L. Helgol Mar Res 60:70–73. doi: 10.1007/s10152-005-0013-4 CrossRefGoogle Scholar
  36. Shield PD (1978) Larval development of the caridean shrimp, Hippolyte pleuracanthus (Stimpson), reared in the laboratory. Estuaries 1:1–16. doi: 10.2307/1351645 CrossRefGoogle Scholar
  37. Spotte S, Bubucis PM, Overstreet RM (1995) Caridean shrimps associated with the slimy sea plume (Pseudopterogorgia americana) in midsummer at Guana Island, British Virgin Islands, West Indies. J Crustac Biol 15:291–300. doi: 10.2307/1548956 CrossRefGoogle Scholar
  38. Spotte S, Bubucis PM (1996) Diversity and abundance of caridean shrimps associated with the slimy sea plume Pseudopterogorgia americana at Pine Cay, Turks and Caicos Islands, British West Indies. Mar Ecol Prog Ser 133:299–302. doi: 10.3354/meps133299 CrossRefGoogle Scholar
  39. Shuster SM, Wade MJ (2003) Mating systems and strategies. Princeton University Press, PrincetonGoogle Scholar
  40. Siegfried CA (1980) Seasonal abundance and distribution of Crangon franciscorum and Palaemon macrodactylus (Decapoda, Caridea) in the San Francisco Bay-Delta. Biol Bull 159:177–192. doi: 10.2307/1541017 CrossRefGoogle Scholar
  41. Siegfried CA (1989) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Pacific Southwest) Crangonid shrimp. US fish and wildlife service biological report 82 (11.125). US Army Corp Engineers TR EL 82–4:1–18Google Scholar
  42. Stotz WB, González SA (1997) Abundance, growth, and production of the sea scallop Argopecten purpuratus (Lamarck 1819): bases for sustainable exploitation of natural scallop beds in north-central Chile. Fish Res 32:173–183. doi: 10.1016/S0165-7836(97)00010-6 CrossRefGoogle Scholar
  43. Terossi M, López Greco LS, Mantelatto FL (2008) Hippolyte obliquimanus (Decapoda: Caridea: Hippolytidae): a gonochoric or hermaphroditic shrimp species? Mar Biol (Berl) 154:127–135. doi: 10.1007/s00227-008-0907-1 CrossRefGoogle Scholar
  44. Thiel M, Hinojosa I (2003) Mating behavior of female rock shrimp Rhynchocinetes typus (Decapoda: Caridea)—indication for convenience polyandry and cryptic female choice. Behav Ecol Sociobiol 55:113–121. doi: 10.1007/s00265-003-0677-1 CrossRefGoogle Scholar
  45. Torres P, Penha-Lopes G, Macia A, Paula J (2007) Population structure and egg production of the seagrass shrimp Hippolyte kraussiana Stimpson, 1860 (Decapoda: Hippolytidae) at Inhaca island, Mozambique. Inv Rep Dev 50:145–153CrossRefGoogle Scholar
  46. d’Udekem d’Acoz C (1995) On three Hippolyte’s from the Northeastern Atlantic and the Mediterranean: H. lagarderei sp. nov, H. varians Leach, 1814 and H. holthuisi Zariquiey Alvarez, 1953 (Decapoda, Caridea). Crustaceana 68:494–502CrossRefGoogle Scholar
  47. d’Udekem d’Acoz C (1996) The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool Verhandelingen 303:3–133Google Scholar
  48. d’Udekem d’Acoz C (1997) Redescription of Hippolyte obliquimanus Dana, 1852, and comparison with Hippolyte williamsi Schmitt, 1924 (Decapoda, Caridea). Crustaceana 70:469–479CrossRefGoogle Scholar
  49. d’Udekem d’Acoz C (2007) New records of Atlantic Hippolyte, with the description of two new species, and a key to all Atlantic and Mediterranean species (Crustacea, Decapoda, Caridea). Zoosystema 29:183–207Google Scholar
  50. d’Udekem d’Acoz C (1999) Redescription of Hippolyte ventricosa H. Milne Edwards, 1837 based on syntypes, with remarks on Hippolyte orientalis Heller, 1862 (Crustacea, Decapoda, Caridea). Zoosystema 21:65–76Google Scholar
  51. d’Udekem d’Acoz C (2001) Redescription of Hippolyte australiensis (Stimpson, 1860) (Crustacea: Decapoda: Caridea). Biologie 71:37–44Google Scholar
  52. Wellborn GA, Cothran RD (2007) Ecology and evolution of mating behavior in freshwater amphipods (Chapter 7). In: Duffy JE, Thiel M (eds) Evolutionary ecology of social and sexual systems: crustaceans as model organisms. Oxford University Press, New York, pp 147–166CrossRefGoogle Scholar
  53. Wicksten MK (1990) Key to the hippolytid shrimp of the Eastern Pacific Ocean. Fishery Bull 88:587–598Google Scholar
  54. Williams AB (1984) Shrimps, lobsters and crabs of the Atlantic coast of the eastern United States, Maine to Florida. (ed.) S.I. Press, Washington, DC 550 ppGoogle Scholar
  55. Woods CMC (2002) Natural diet of the seahorse Hippocampus abdominalis. New Zealand J Mar Freshw Res 36:655–660CrossRefGoogle Scholar
  56. Yanagawa S, Watanabe S (1988) Life history and morphology of the hippolytid shrimp Hippolyte ventricosa in Kominato Bay. Nippon Suisan Gakkaishi 54:613–618CrossRefGoogle Scholar
  57. Zupo V (2000) Effect of microalgal food on the sex reversal of Hippolyte inermis (Crustacea: Decapoda). Mar Ecol Prog Ser 201:251–259CrossRefGoogle Scholar
  58. Zupo V (2001) Influence of diet on sex differentition of Hippolyte inermis Leach (Decapoda: Natantia) in the field. Hydrobiologia 449:131–140CrossRefGoogle Scholar
  59. Zupo V, Buttino I (2001) Larval development of decapod crustaceans investigated by confocal microscopy: an application to Hippolyte inermis (Natantia). Mar Biol 138:965–973CrossRefGoogle Scholar
  60. Zupo V, Messina P (2007) How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda). Mar Biol 151:907–917CrossRefGoogle Scholar
  61. Zupo V, Nelson WG (1999) Factors influencing the association patterns of Hippolyte zostericola and Palaemonetes intermedius (Decapoda: Natantia) with seagrasses of the Indian River Lagoon, Florida. Mar Biol 134:181–190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nuxia L. Espinoza-Fuenzalida
    • 1
  • Martin Thiel
    • 1
    • 2
  • Enrique Dupre
    • 1
  • J. Antonio Baeza
    • 1
    • 3
    • 4
    Email author
  1. 1.Facultad Ciencias del MarUniversidad Católica del NorteLarrondoChile
  2. 2.Center for Advanced Studies in Arid Systems, CEAZACoquimboChile
  3. 3.Smithsonian Marine Station at Fort PierceFort PierceUSA
  4. 4.Smithsonian Tropical Research InstituteBalboaRepublic of Panama

Personalised recommendations