Marine Biology

, Volume 155, Issue 5, pp 531–541 | Cite as

Predicting zooplankton response to environmental changes in a temperate estuarine ecosystem

  • Sónia Cotrim MarquesEmail author
  • Ulisses Miranda Azeiteiro
  • Sérgio Miguel Leandro
  • Henrique Queiroga
  • Ana Lígia Primo
  • Filipe Martinho
  • Ivan Viegas
  • Miguel Ângelo Pardal
Original Paper


A novel strategy that allows to predict the responses of zooplanktonic species to environmental conditions in an estuarine temperate ecosystem (Mondego estuary) is presented. It uses 12 indicator species from the zooplanktonic Mondego database (102 species) that are common members of the different habitats, characterized by their specific hydrological conditions. Indicator-species analysis (ISA) was used to define and describe which species were typical of each of the five sampling stations in a 4-year study (2003–2006). First, a canonical correspondence analysis (CCA) was carried out to objectively identify the species-habitat affinity based on the relationship between species, stations and environmental data. Response curves for each of the zooplanktonic species, generated by univariate logistic regression on each of the independent variables temperature and salinity, were generally in agreement with the descriptive statistics concerning the occurrence of those species in this particular estuarine ecosystem. Species-specific models that predict probability of occurrence relative to environmental parameters like salinity, water temperature, turbidity, chlorophyll a, total suspended solids and dissolved oxygen were then developed for the zooplanktonic species. The multiple logistic models used contained between 1 and 3 significant parameters and the percentage correctly predicted was moderate to high, ranging from 62 to 95%. The predictive accuracy of the model was assured by direct comparison of model predictions with the observed occurrence of species obtained in 2006 (validation) and from data collected in the early 2000s in another Portuguese estuary—Ria de Aveiro (Canal de Mira), a complex mesotidal shallow coastal lagoon. The regression logistic model here defined, correctly suggested that the distribution of zooplankton species was mainly dependent on salinity and water temperature. The logistic regression proved to be a useful approach for predicting the occurrence of species under varying environmental conditions at a local scale. Therefore, this model can be considered of reasonable application (and should be tested in other estuarine systems) due to its ability to predict the occurrence of individual zooplanktonic species associated with habitat changes.


Total Suspended Solid Indicator Species Zooplanktonic Community Zooplanktonic Species Estuarine Ecosystem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present work was supported by I.·I. I. (Instituto de Investigação Interdisciplinar of the University of Coimbra) through a Ph.D grant awarded to S. C. Marques (III/AMB/28/2005). A special thanks to all colleagues who helped during field work.


  1. Anger K (2003) Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebr Reprod Dev 43:29–45CrossRefGoogle Scholar
  2. Azeiteiro UMM, Marques JC, Ré P (1999) Zooplankton annual cycle in the Mondego river estuary (Portugal). Arq Mus Bocage 3:239–263Google Scholar
  3. Badosa A, Boix D, Brucet S, López-Flores R, Gascón S, Quintana XD (2007) Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): influence of hydrology, nutrient composition, food resource availability and predation. Estuar Coast Shelf Sci 71:335–346. doi: 10.1016/j.ecss.2006.08.005 CrossRefGoogle Scholar
  4. Beaugrand G (2004) The North Sea regime shift: evidence, causes, mechanisms and consequences. Prog Oceanogr 60:245–262. doi: 10.1016/j.pocean.2004.02.018 CrossRefGoogle Scholar
  5. Beaugrand G, Reid PC, Ibanez F, Lindley JA, Edwards M (2002) Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296:1692–1694. doi: 10.1126/science.1071329 CrossRefGoogle Scholar
  6. Berasategui AD, Menu-Marque S, Gómez-Erache M, Ramírez FC, Mianzan HW, Acha EM (2006) Copepod assemblages in a highly complex hydrographic region. Estuar Coast Shelf Sci 66:483–492. doi: 10.1016/j.ecss.2005.09.014 CrossRefGoogle Scholar
  7. Blanco-Bercial L, Alvarez-Marques F, Cabal JA (2006) Changes in the mesozooplankton community associated with the hydrography off the northwestern Iberian Peninsula. ICES J Mar Sci 63:799–810. doi: 10.1016/j.icesjms.2006.03.007 CrossRefGoogle Scholar
  8. Bonnet D, Frid CLJ (2004) Seven copepod species considered as indicators of water-mass influence and changes: results from a Northumberland coastal station. ICES J Mar Sci 61:485–491. doi: 10.1016/j.icesjms.2004.03.005 CrossRefGoogle Scholar
  9. Cardoso PGM, Pardal MA, Lillebø AI, Ferreira SM, Raffaelli D, Marques JC (2004) Dynamics change in seagrass assemblages under eutrophication and implication for recovery. J Exp Mar Biol Ecol 302:233–248. doi: 10.1016/j.jembe.2003.10.014 CrossRefGoogle Scholar
  10. Cardoso PG, Raffaelli D, Lillebø AI, Verdelhos T, Pardal MA (2008) The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics. Estuar Coast Shelf Sci 76:553–565. doi: 10.1016/j.ecss.2007.07.026 CrossRefGoogle Scholar
  11. Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the match-mismatch hypothesis. Adv Mar Biol 26:249–293. doi: 10.1016/S0065-2881(08)60202-3 CrossRefGoogle Scholar
  12. Day J, Hall CAS, Kemp WM, Yanez-Arancibia A (1989) Estuarine ecology. Wiley, New YorkGoogle Scholar
  13. Dolbeth M, Cardoso PG, Ferreira SM, Verdelhos T, Raffaelli D, Pardal MA (2007) Anthropogenic and natural disturbance effects on a macrobenthic estuarine community over a 10-year period. Mar Pollut Bull 54:576–585. doi: 10.1016/j.marpolbul.2006.12.005 CrossRefGoogle Scholar
  14. Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366Google Scholar
  15. Durbin AG, Durbin EG (1981) Standing stock and estimated production rates of phytoplankton and zooplankton in Narragansett Bay. R I Estuaries 4:24–41. doi: 10.2307/1351540 CrossRefGoogle Scholar
  16. Escaravage V, Soetaert K (1995) Secondary production of the brackish copepod communities and their contribution to the carbon fluxes in the Westerschelde estuary (The Netherlands). Hydrobiologia 311:103–114. doi: 10.1007/BF00008574 CrossRefGoogle Scholar
  17. Fernandez de Puelles ML, Valencia J, Jansa J, Morillas A (2004) Hydrographical characteristics and zooplankton distribution in the Mallorca channel (Western Mediterranean): spring 2001. ICES J Mar Sci 61:654–666. doi: 10.1016/j.icesjms.2004.03.031 CrossRefGoogle Scholar
  18. Fulton RS (1984) Distribution and community structure of estuarine copepods. Estuaries 7:38–50. doi: 10.2307/1351955 CrossRefGoogle Scholar
  19. Gaudy R, Cervetto G, Pagano M (2000) Comparison of the metabolism of Acartia clausi and A. tonsa: influence of temperature and salinity. J Exp Mar Biol Ecol 247:51–65. doi: 10.1016/S0022-0981(00)00139-8 CrossRefGoogle Scholar
  20. Halsband-Lenk C, Hirche HJ, Carlotti F (2002) Temperature impact on reproduction and development of congener copepod populations. J Exp Mar Biol Ecol 271:121–153. doi: 10.1016/S0022-0981(02)00025-4 CrossRefGoogle Scholar
  21. Hansson LJ, Moeslund O, Kiørboe T, Riisgård HU (2005) Clearance rates of jellyfish and their potential predation impact on zooplankton and fish larvae in a neritic ecosystem (Limfjorden, Denmark). Mar Ecol Prog Ser 304:117–131. doi: 10.3354/meps304117 CrossRefGoogle Scholar
  22. Hays GC (1996) Large scale patterns of diel vertical migration in the North Atlantic region. Deep Sea Res Part I Oceanogr Res Pap 43:1601–1615. doi: 10.1016/S0967-0637(96)00078-7 CrossRefGoogle Scholar
  23. Hays GC, Richardson AJ, Robinson C (2005) Climate change and marine plankton. Trends Ecol Evol 20:337–344. doi: 10.1016/j.tree.2005.03.004 CrossRefGoogle Scholar
  24. Hirst AG, Kiørboe T (2002) Mortality of marine planktonic copepods: global rates and patterns. Mar Ecol Prog Ser 230:195–209. doi: 10.3354/meps230195 CrossRefGoogle Scholar
  25. Hosmer D, Lemeshow S (2000) Applied logistic regression. Wiley, New YorkCrossRefGoogle Scholar
  26. Houghton JD, Doyle TK, Wilson MW, Davenport J, Hays GC (2006) Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87:1967–1972. doi: 10.1890/0012-9658(2006)87[1967:JAALTF]2.0.CO;2 CrossRefGoogle Scholar
  27. Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61. doi: 10.1016/S0169-5347(99)01764-4 CrossRefGoogle Scholar
  28. IPCC (2007) Climate change 2007: the Physical Science Basis. Summary for Policymakers, Paris, February 2007Google Scholar
  29. Kiorboe T, Nielsen TG (1994) Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 1. Copepods. Limnol Oceanogr 39:493–507CrossRefGoogle Scholar
  30. Lance J (1963) The salinity tolerance of some estuarine plankton copepods. Limnol Oceanogr 8:440–449CrossRefGoogle Scholar
  31. Leandro SM, Queiroga H, Rodriguez L, Tiselius P (2006) Temperature dependent development and somatic growth in two allopatric populations of Acartia clausi (copepoda: calanoida). Mar Ecol Prog Ser 322:189–197. doi: 10.3354/meps322189 CrossRefGoogle Scholar
  32. Marques SC, Azeiteiro UM, Marques JC, Neto JM, Pardal MA (2006) Zooplankton and ichthyoplankton communities in a temperate estuary: spatial and temporal patterns. J Plankton Res 28:297–312. doi: 10.1093/plankt/fbi126 CrossRefGoogle Scholar
  33. Marques SC, Azeiteiro UM, Martinho F, Pardal MA (2007) Climate variability and planktonic communities: the effect of an extreme event (severe drought) in a southern European estuary. Estuar Coast Shelf Sci 73:725–734. doi: 10.1016/j.ecss.2007.03.010 CrossRefGoogle Scholar
  34. Martinho F, Leitão R, Viegas I, Dolbeth M, Neto JM, Cabral HN et al (2007) The influence of an extreme drought event in the fish community of a southern Europe temperate estuary. Estuar Coast Shelf Sci 75:537–546. doi: 10.1016/j.ecss.2007.05.040 CrossRefGoogle Scholar
  35. McLusky DS, Elliott M (2004) The estuarine ecosystem. Oxford University Press, OxfordCrossRefGoogle Scholar
  36. Moreira MH, Queiroga H, Machado MM, Cunha MR (1993) Environmental gradients in a southern estuarine ecosystem: Ria de Aveiro, Portugal. Implication for soft bottom macrofauna colonization. Neth J Aquat Ecol 27:465–482. doi: 10.1007/BF02334807 CrossRefGoogle Scholar
  37. Mouny P, Dauvin J-C (2002) Environmental control of mesozooplankton community structure in Seine estuary (English Channel). Oceanol Acta 25:13–22. doi: 10.1016/S0399-1784(01)01177-X CrossRefGoogle Scholar
  38. Paiva V, Ramos JA, Martins J, Almeida A, Carvalho A (2008) Foraging habitat selection by Little Terns Sternula albifrons in an estuarine lagoon system of southern Portugal. Ibis 150:18–35CrossRefGoogle Scholar
  39. Pardal MA, Marques JC, Metelo I, Lillebø AI, Flindt MR (2000) Impact of eutrophication on the life cycle, population dynamics and production of Ampithoe valida (Amphipoda) along an estuarine spatial gradient (Mondego estuary, Portugal). Mar Ecol Prog Ser 196:207–219. doi: 10.3354/meps196207 CrossRefGoogle Scholar
  40. Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Philos Trans Roy Soc Lond B 345:75–79CrossRefGoogle Scholar
  41. Perez-Ruzafa A, Gilabert J, Gutierrez JM, Fernandez AI, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475/476:359–369. doi: 10.1023/A:1020343510060 CrossRefGoogle Scholar
  42. Queiroga H, Blanton J (2004) Interactions between behaviour and physical forcing in the control of horizontal transport of decapod crustaceans larvae. Adv Mar Biol 47:107–204. doi: 10.1016/S0065-2881(04)47002-3 CrossRefGoogle Scholar
  43. Roddie BD, Leakey RJG, Berry AJ (1984) Salinity-temperature tolerance and osmoregulation in Eurytemora affinis (Poppe) (Copepoda: Calanoida) in relation to its distribution in the zooplankton of the upper reaches of the Forth estuary. J Exp Mar Biol Ecol 79:191–211. doi: 10.1016/0022-0981(84)90219-3 CrossRefGoogle Scholar
  44. Russell FS (1973) Hydrographical and biological conditions in the North Sea as indicated by plankton organisms. J Cons Int Explor Mer 14:171–192CrossRefGoogle Scholar
  45. Tackx MLM, Nathalie DP, Riet VM, Azemar F, Abdelhacq H, Stefan VD et al (2004) Zooplankton in the Schelde estuary, Belgium and The Netherlands. Spatial and temporal pattern. J Plankton Res 26:133–141. doi: 10.1093/plankt/fbh016 CrossRefGoogle Scholar
  46. Ter Braak CJF, Smilauer P (1998) CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, New YorkGoogle Scholar
  47. Thrush SF, Hewitt JE, Herman PMJ, Ysebaert T (2005) Multi-scale analysis of species–environment Relationships. Mar Ecol Prog Ser 302:13–26. doi: 10.3354/meps302013 CrossRefGoogle Scholar
  48. Warner AJ, Hays GC (1994) Sampling by the continuous plankton recorder survey. Prog Oceanogr 34:237–256. doi: 10.1016/0079-6611(94)90011-6 CrossRefGoogle Scholar
  49. Whitman RL, Meredith BN, Goodrich ML, Murphy PC, Bruce MD (2004) Characterization of Lake Michigan coastal lakes using zooplankton assemblages. Ecol Indic 4:277–286. doi: 10.1016/j.ecolind.2004.08.001 CrossRefGoogle Scholar
  50. Ysebaert T, Meire P, Herman P, Verbeek H (2002) Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar Ecol Prog Ser 225:79–95. doi: 10.3354/meps225079 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sónia Cotrim Marques
    • 1
    Email author
  • Ulisses Miranda Azeiteiro
    • 1
  • Sérgio Miguel Leandro
    • 2
    • 3
  • Henrique Queiroga
    • 2
  • Ana Lígia Primo
    • 1
  • Filipe Martinho
    • 1
  • Ivan Viegas
    • 1
  • Miguel Ângelo Pardal
    • 1
  1. 1.Department of Zoology, Institute of Marine Research, IMARUniversity of CoimbraCoimbraPortugal
  2. 2.CESAM and Department of BiologyUniversity of AveiroAveiroPortugal
  3. 3.Instituto Politécnico de Leiria, Escola Superior de Tecnologia do MarPenichePortugal

Personalised recommendations