Marine Biology

, Volume 155, Issue 5, pp 505–520 | Cite as

Comparative foraging ecology and ecological niche of a superabundant tropical seabird: the sooty tern Sterna fuscata in the southwest Indian Ocean

  • S. JaquemetEmail author
  • M. Potier
  • Y. Cherel
  • J. Kojadinovic
  • P. Bustamante
  • P. Richard
  • T. Catry
  • J. A. Ramos
  • M. Le Corre
Original Paper


Over 6-million pairs of sooty terns Sterna fuscata breed once a year in the southwest Indian Ocean, mostly on three islands of the Mozambique Channel (Europa, Juan de Nova and Glorieuses) and in the Seychelles region. Seasonal reproduction in either winter or summer is the dominant strategy in the area, but non-seasonal reproduction also occurred in some places like at Glorieuses Archipelago. The feeding ecology of the sooty tern was investigated during the breeding seasons to determine whether terns showed significant differences in their trophic ecology between locations. Regurgitations were analyzed to describe the diet of individuals when breeding, and stable isotopes and mercury concentrations were used to temporally integrate over the medium-term of the trophic ecology of both adults and chicks. Overall, the diet was composed of fish, flying squid and fish larvae in different proportions. At Europa and Aride in the Seychelles, where winter reproduction occurs, large epipelagic prey like flying fish or squid dominated the diet. At Juan de Nova, sooty terns reproduce in summer and rely mostly on fish larvae. At Glorieuses (non-seasonal breeding), the diet was intermediate with fish larvae and flying squid being important prey items. The stable-carbon and nitrogen isotope values in blood confirm the differences observed in dietary analysis, and demonstrate different feeding strategies between colonies. δ13C values of feathers showed spatial segregation between birds from the Mozambique Channel and the Seychelles region. Terns from the Seychelles had also higher δ15N values. Feather δ13C values also suggest a significant shift from summer to wintering habitat for birds from Juan de Nova. This study emphasizes the high phenotypic plasticity of the species, which may explain its numerical dominance in all tropical waters of the World’s Ocean.


Prey Item Mercury Concentration Fish Larva Marine Bird Southwest Indian Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank M. Salamolard, M. Charrier, F. Saint-Ange, E. Robert for their help in the field, the Direction Régionale de l’Environnement (DIREN) of Ile de la Réunion for financial support and the Préfet de la Réunion for authorization to work on the French Islands of the Mozambique Channel. The FAZSOI transported and logistically supported us in the field. SJ benefited from a Ph.D. scholarship from the French Ministère de l’Enseignement Supérieur et de la Recherche during this study, and TC was funded by a doctoral grant from Fundação para a Ciência e Tecnologia (SFRH/BD/16706/2004). Aride Island Nature Reserve Seychelles gave access to the island for fieldwork.


  1. Ainley DG, Boekelheide RJ (1983) An ecological comparison of oceanic seabird communities of the south Pacific ocean. Stud Avian Biol 8:2–23Google Scholar
  2. Ashmole NP (1963) The biology of the Wideawake or Sooty Tern Sterna fuscata on Ascension Island. Ibis 103b:297–364. doi: 10.1111/j.1474-919X.1963.tb06757.x CrossRefGoogle Scholar
  3. Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner DS, King JR (eds) Avian biology, vol 1. Academic Press, New York, pp 223–286Google Scholar
  4. Au DWK, Pitman RL (1986) Seabird interactions with dolphins and tuna in the eastern tropical Pacific. Condor 88:304–317. doi: 10.2307/1368877 CrossRefGoogle Scholar
  5. Barbraud C, Weimerskirch H (2003) Climate and density shape population dynamics of a marine top predator. Proc R Soc Lond B Biol Sci 270:2111–2116. doi: 10.1098/rspb.2003.2488 CrossRefGoogle Scholar
  6. Bertrand A, Bard FX, Josse E (2002) Tuna food habits related to the micornekton distribution in French Polynesia. Mar Biol (Berl) 140:1023–1037. doi: 10.1007/s00227-001-0776-3 CrossRefGoogle Scholar
  7. Brooke MDL (2004) The food consumption of the world’s seabirds. Proc R Soc Lond B Biol Sci 271(Suppl):246–248. doi: 10.1098/rsbl.2003.0153 CrossRefGoogle Scholar
  8. Cherel Y, Hobson KA, Weimerskirch H (2000) Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds. Oecologia 122:155–162. doi: 10.1007/PL00008843 CrossRefGoogle Scholar
  9. Cherel Y, Bocher P, Trouvé C, Weimerskirch H (2002) Diet and feeding ecology of blue petrels Halobaena caerulea at Iles Kerguelen, Southern Indian Ocean. Mar Ecol Prog Ser 228:283–299. doi: 10.3354/meps228283 CrossRefGoogle Scholar
  10. Cherel Y, Hobson KA, Hassani S (2005) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115. doi: 10.1086/425202 CrossRefGoogle Scholar
  11. Cherel Y, Phillips RA, Hobson KA, McGill R (2006) Stable isotope evidence of diverse species-specific and individual wintering strategies in seabirds. Biol Lett 2:301–303. doi: 10.1098/rsbl.2006.0445 CrossRefGoogle Scholar
  12. Clarke MR (1986) A handbook for identification of cephalopod beaks. Clarendon, OxfordGoogle Scholar
  13. Croxall JP, reid K, Prince PA (1999) Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser 177:115–131. doi: 10.3354/meps177115 CrossRefGoogle Scholar
  14. Donguy JR, Meyers G (1996) Seasonal variations of sea-surface salinity and temperature in the tropical Indian Ocean. Deep Sea Res Part I Oceanogr Res Pap 43:117–138. doi: 10.1016/0967-0637(96)00009-X CrossRefGoogle Scholar
  15. Erwin CA, Congdon BC (2007) Day-to-day variation in sea-surface temperature reduces sooty terns Sterna fuscata foraging success on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 331:255–266. doi: 10.3354/meps331255 CrossRefGoogle Scholar
  16. Feare CJ (1976) The breeding of the Sooty Tern Sterna fuscata in the Seychelles and the effects of experimental removal of its eggs. J Zool 179:317–360CrossRefGoogle Scholar
  17. Feare CJ, Jaquemet S, Le Corre M (2007) An inventory of Sooty Terns Sterna fuscata in the western Indian Ocean with special reference to threats and trends. Ostrich 78(2):423–434. doi: 10.2989/OSTRICH.2007. CrossRefGoogle Scholar
  18. Forero MG, Hobson KA, Bortolotti GR, Donazar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence of offspring quality. Mar Ecol Prog Ser 234:289–2999. doi: 10.3354/meps234289 CrossRefGoogle Scholar
  19. Harrison CS, Hida TS, Seki MP (1983) Hawaiian seabird feeding ecology. Wildl Monogr 85:1–71Google Scholar
  20. Hensley VI, Hensley DA (1995) Fishes eaten by sooty terns and brown noddies in the Dry Tortugas, Florida. Bull Mar Sci 56:813–821Google Scholar
  21. Hobson KA (1993) Trophic relationships among high Arctic seabirds: insights from tissue-dependent stable-isotope models. Mar Ecol Prog Ser 95:7–18CrossRefGoogle Scholar
  22. Hobson KA, Gibbs HL, Gloutney ML (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen analysis. Can J Zool 75:1720–1723. doi: 10.1139/z97-799 CrossRefGoogle Scholar
  23. Hodum PJ, Hobson KA (2000) Trophic relationships among Antarctic fulmarine petrels: insights into dietary overlap and chick provisioning stretegies inferred from stable-isotope (δ15 and δ13C) analyses. Mar Ecol Prog Ser 198:273–281. doi: 10.3354/meps198273 CrossRefGoogle Scholar
  24. Jaquemet S, Le Corre M, Marsac F, Potier M, Weimerskirch H (2005) Foraging habitat of the seabird community of Europa Island (Mozambique Channel). Mar Biol (Berl) 147(3):573–582. doi: 10.1007/s00227-005-1610-0 CrossRefGoogle Scholar
  25. Jaquemet S, Le Corre M, Quartly GD (2007) Ocean control of the breeding regime of the sooty terns in the South-West Indian Ocean. Deep Sea Res Part I Oceanogr Res Pap 54(1):130–142. doi: 10.1016/j.dsr.2006.10.003 CrossRefGoogle Scholar
  26. Kojadinovic J, Potier M, Le Corre M, Cosson RP, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from Western Indian Ocean. Environ Pollut 146:548–566. doi: 10.1016/j.envpol.2006.07.015 CrossRefGoogle Scholar
  27. Le Corre M (2001) Breeding seasons of seabirds of Europa Island (southern Mozambique Channel) in relation to seasonal changes in the marine environment. J Zool (Lond) 254:239–249. doi: 10.1017/S0952836901000759 CrossRefGoogle Scholar
  28. Le Corre M, Cherel Y, Lagarde F, Lormée H, Jouventin P (2003) Seasonal and inter-annual variation in the feeding ecology of a tropical oceanic-seabird, the red-tailed tropicbird Phaethon rubricauda. Mar Ecol Prog Ser 255:289–301. doi: 10.3354/meps255289 CrossRefGoogle Scholar
  29. Le Corre M, Jaquemet S (2005) Assessment of the seabird community of the Mozambique Channel and its potential use as an indicator of tuna abundance. Estuar Coast Shelf Sci 63:421–428. doi: 10.1016/j.ecss.2004.11.013 CrossRefGoogle Scholar
  30. Longhurst AR, Pauly D (1987) Ecology of tropical ocean. Academic Press, San DiegoGoogle Scholar
  31. Magurran AE (1988) Ecological diversity and its measurement. Princeton University, PrincetonCrossRefGoogle Scholar
  32. Ménard F, Lorrain A, Potier M, Marsac F (2007) Isotopic evidence of distinct feeding ecologies and movement patterns in two migratory predators (yellowfin tuna and swordfish) of the western Indian Ocean. Mar Biol (Berl) 13:141–152. doi: 10.1007/s00227-007-0789-7 CrossRefGoogle Scholar
  33. Monteiro LR, Furness RW (1995) Seabirds as monitors of mercury in the marine environment. Water Air Soil Pollut 80:851–870. doi: 10.1007/BF01189736 CrossRefGoogle Scholar
  34. Monticelli D, Ramos JA, Quartly GD (2007) Effects of annual changes in primary productivity and ocean indices on the breeding performance of tropical roseate terns in the western Indian Ocean. Mar Ecol Prog Ser 351:273–286. doi: 10.3354/meps07119 CrossRefGoogle Scholar
  35. Pinkas L, Oliphant MS, Iverson ILK (1971) Food habits of albacore, bluefin tuna, and bonito in California waters. Fish Bull (Wash D C) 152:1–105Google Scholar
  36. Quillfeldt P, McGill RA, Furness RW (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm petrel. Mar Ecol Prog Ser 295:295–304. doi: 10.3354/meps295295 CrossRefGoogle Scholar
  37. Rau GH, Sweeney RE, Kaplan IR (1982) Plankton 12C:13C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Res A 29(8):1035–1039CrossRefGoogle Scholar
  38. Robertson WBJ (1969) Transatlantic migration of juvenile sooty terns. Nature 222:632–634. doi: 10.1038/222632a0 CrossRefGoogle Scholar
  39. Rocamora G, Skerrett A (2001) Seychelles. In: Fishpool L, Evand I (eds) Important Bird Area in Africa and associated islands. Pices Publication and Birdlife International, Cambridge, pp 751–768Google Scholar
  40. Sanpera C, Moreno R, Ruiz X, Jover L (2007) Audouin’s gull chicks as bioindicators of mercury pollution at different breeding locations in the western Mediterranean. Mar Pollut Bull 54:691–696. doi: 10.1016/j.marpolbul.2007.01.016 CrossRefGoogle Scholar
  41. Schaffner FC (1990) Food provisioning by white-tailed tropicbirds: effects on the developmental pattern of chicks. Ecology 71:375–390. doi: 10.2307/1940275 CrossRefGoogle Scholar
  42. Schreiber EA, Burger J (2001) Seabirds in the marine environment. In: Schreiber EA, Burger J (eds) Biology of marine birds. CRC Press, Boca RatonCrossRefGoogle Scholar
  43. Schreiber EA, Feare CJ, Harrington BA, Murray BG, Robertson WBJ, Robertson MJ et al (2002) Sooty Tern (Sterna fuscata). In: Poole A, Gill F (eds) The Birds of North America, vol 665. Birds of North America, PhiladelphiaGoogle Scholar
  44. Smale MJ, Watson G, Hecht T (1995) Otolith atals of Southern African marine fishes. JLB Smith Inst. Ichth, Ichthyological Monograph 1, 502p, 149 PlGoogle Scholar
  45. Smith MM, Heemstra PC (1986) Smith’s Sea fishes. Springer, BerlinCrossRefGoogle Scholar
  46. Surman CA, Wooller RD (2003) Comparative foraging ecology of five sympatric terns at a sub-tropical island in the eastern Indian Ocean. J Zool (Lond) 259:219–230. doi: 10.1017/S0952836902003047 CrossRefGoogle Scholar
  47. Tremblay Y, Cherel Y (2003) Geographic variation in the foraging behaviour, diet and chick growth of rockhopper penguins. Mar Ecol Prog Ser 251:279–297. doi: 10.3354/meps251279 CrossRefGoogle Scholar
  48. Walsh PM (1990) The use of seabirds as monitors of heavy metals in the marine environment. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. Boca Raton, Florida, pp 183–200Google Scholar
  49. Weimerskirch H, Le Corre M, Jaquemet S, Marsac F (2005) Foraging strategy of a tropical seabird, the red-footed booby, in a dynamic marine environment. Mar Ecol Prog Ser 288:251–261. doi: 10.3354/meps288251 CrossRefGoogle Scholar
  50. Zar JH (1999) Biostatistical analysis, 4th Edition edn. Prentice Hall Professional, IndianapolisGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • S. Jaquemet
    • 1
    Email author
  • M. Potier
    • 2
  • Y. Cherel
    • 3
  • J. Kojadinovic
    • 1
    • 4
    • 5
  • P. Bustamante
    • 4
  • P. Richard
    • 4
  • T. Catry
    • 6
  • J. A. Ramos
    • 6
  • M. Le Corre
    • 1
  1. 1.Laboratoire d’Ecologie MarineUniversité de la RéunionSaint Denis, Ile de la RéunionFrance
  2. 2.Institut de Recherche pour le DéveloppementCentre de la RéunionSainte-Clotilde, Ile de la RéunionFrance
  3. 3.Centre d’Etudes Biologiques de ChizéUPR 1934 du CNRSVilliers-en-BoisFrance
  4. 4.Centre de Recherche sur les Ecosystèmes Littoraux AnthropisésUMR 6217, CNRS-IFREMER-Université de la RochelleLa Rochelle Cedex 01France
  5. 5.EMI, Université de NantesNantes Cedex 3France
  6. 6.Department of Zoology, Institute of Marine Research (IMAR)University of CoimbraCoimbraPortugal

Personalised recommendations