Marine Biology

, Volume 155, Issue 6, pp 593–598 | Cite as

Differences in stable isotopes in blood and feathers of seabirds are consistent across species, age and latitude: implications for food web studies

  • Petra QuillfeldtEmail author
  • Leandro Bugoni
  • Rona A. R. McGill
  • Juan F. Masello
  • Robert W. Furness
Original Paper


Stable isotopes of growing feathers and blood both represent assimilated diet, and both tissues are used to study the diet and foraging distribution of marine and terrestrial birds. Although most studies have assumed that both tissues represent a difference of one trophic level to diet, the enrichment factors of blood and feathers may differ, especially where endogenous reserves are used as precursors during feather synthesis. In this study, we compare carbon and nitrogen stable isotopes of blood and simultaneously growing feathers of five species of Procellariiformes, representing five genera, different geographical regions and different life stages (chicks and adults). In all species, feathers were enriched in 15N and 13C compared with blood. Isotopic values of carbon and nitrogen were correlated in different tissues growing simultaneously for most species analyzed, suggesting that mathematical corrections could be used to compare different tissues. Our results imply that more care needs to be taken when comparing stable isotope signatures across studies assuming different tissues are equivalent indicators of trophic ecology.


Uric Acid Stable Isotope Nitrogen Stable Isotope Nitrogen Isotope Ratio Isotope Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the following organizations that facilitated fieldwork: New Island Conservation Trust, Projeto Albatroz, captain and crew of fishing vessel ‘Ana Amaral’ and the Brazilian Navy. NERC funded the isotope analysis. We would like to acknowledge financial support by DFG, Germany (Qu 148/1-ff), and New Island Conservation Trust. Fieldwork at New Island was approved by the Falkland Islands Government (Environmental Planning Office) and in Brazil by environmental agency (IBAMA) through permits No. 0128931BR, No. 203/2006, No. 02001.005981/2005, No. 023/2006, No. 040/2006 and No. 1282/1, and International Animal Health Certificate No. 0975–06. The Scottish Executive-Rural Affairs Directorate also kindly provided us the permit POAO 2007/91 to import samples into Scotland. LB received a CAPES Scholarship.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Barrett RT, Camphuysen K, Anker-Nilssen T, Chardine JW, Furness RW, Garthe S et al (2007) Diet studies of seabirds: a review and recommendations. ICES J Mar Sci 64:1675–1691. doi: 10.1093/icesjms/fsm152 CrossRefGoogle Scholar
  2. Bearhop S, Phillips RA, Thompson DR, Waldron S, Furness RW (2000a) Variability in mercury concentrations of great skuas Catharacta skua: the influence of colony, diet and trophic status inferred from stable isotope signatures. Mar Ecol Prog Ser 195:261–268. doi: 10.3354/meps195261 CrossRefGoogle Scholar
  3. Bearhop S, Teece MA, Waldron S, Furness RW (2000b) Influence of lipid and uric acid on δ13C and δ15N values of avian blood: implications for trophic studies. Auk 117:504–507. doi: 10.1642/0004-8038(2000)117[0504:IOLAUA]2.0.CO;2 Google Scholar
  4. Bearhop S, Phillips RA, McGill R, Cherel Y, Dawson DA, Croxall JP (2006) Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar Ecol Prog Ser 311:157–164. doi: 10.3354/meps311157 CrossRefGoogle Scholar
  5. Boismenu C, Gauthier G, Larochelle J (1992) Physiology of prolonged fasting in Greater Snow Geese (Chen caerulescens atlantica). Auk 109:511–521Google Scholar
  6. Bugoni L, McGill RAR, Furness RW (2008a) Effects of preservation methods on stable isotopes signatures in bird tissues. Rapid Commun Mass Spectrom 22:2457–2462. doi: 10.1002/rcm.3633 CrossRefGoogle Scholar
  7. Bugoni L, Neves TS, Peppes FV, Furness RW (2008b) An effective method for trapping scavenging seabirds at sea. J Field Ornithol 79(3):308–313. doi: 10.1111/j.1557-9263.2008.00178.x CrossRefGoogle Scholar
  8. Cherel Y, Hobson KA, Bailleul FR, Groscolas R (2005a) Nutrition, physiology, and stable isotopes: new information from fasting and molting penguins. Ecology 86:2881–2888. doi: 10.1890/05-0562 CrossRefGoogle Scholar
  9. Cherel Y, Hobson KA, Hassani S (2005b) Isotopic discrimination between food and blood and feathers of captive penguins: Implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115. doi: 10.1086/425202 CrossRefGoogle Scholar
  10. Cherel Y, Phillips RA, Hobson KA, McGill R (2006) Stable isotope evidence of diverse species-specific and individual wintering strategies in seabirds. Biol Lett 2:301–303. doi: 10.1098/rsbl.2006.0445 CrossRefGoogle Scholar
  11. Forero MG, Gonzalez-Solis J, Hobson KA, Doncazar JA, Bertellotti M, Blanco G et al (2005) Stable isotopes reveal trophic segregation by sex and age in the southern giant petrel in two different food webs. Mar Ecol Prog Ser 296:107–113. doi: 10.3354/meps296107 CrossRefGoogle Scholar
  12. Garcia-Rodriguez T, Ferrer M, Carrillo JC, Castroviejo J (1987) Metabolic responses of Buteo buteo to long-term fasting and refeeding. Comp Biochem Physiol A 87:381–386. doi: 10.1016/0300-9629(87)90139-3 CrossRefGoogle Scholar
  13. Gladbach A, McGill RAR, Quillfeldt P (2007) Foraging areas of Wilson’s storm-petrel Oceanites oceanicus in the breeding and inter-breeding period determined by stable isotope analysis. Polar Biol 30:1005–1012. doi: 10.1007/s00300-007-0258-2 CrossRefGoogle Scholar
  14. Hobson KA, Clark RG (1992a) Assessing avian diets using stable isotopes I. Turnover of 13C in tissues. Condor 94:181–188. doi: 10.2307/1368807 CrossRefGoogle Scholar
  15. Hobson KA, Clark RG (1992b) Assessing avian diets using stable isotopes II. Factors influencing diet-tissue fractionation. Condor 94:189–197. doi: 10.2307/1368808 CrossRefGoogle Scholar
  16. Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for nondestructive sampling in avian dietary studies. Auk 110:638–641CrossRefGoogle Scholar
  17. Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar Ecol Prog Ser 84:9–18. doi: 10.3354/meps084009 CrossRefGoogle Scholar
  18. Hobson KA, Sirois J, Gloutney ML (2000) Tracing nutrient allocation to reproduction with stable isotopes: a preliminary investigation using colonial waterbirds of Great Slave Lake. Auk 117:760–774. doi: 10.1642/0004-8038(2000)117[0760:TNATRW]2.0.CO;2 CrossRefGoogle Scholar
  19. Langin KM, Reudink MW, Marra PP, Norris DR, Kyser TK, Ratcliffe LM (2007) Hydrogen isotopic variation in migratory bird tissues of known origin: implications for geographical assignment. Oecologia 152:449–457. doi: 10.1007/s00442-007-0669-3 CrossRefGoogle Scholar
  20. Langston NE, Rohwer S (1996) Molt-breeding tradeoffs in albatrosses: life story implications for big birds. Oikos 76:498–510. doi: 10.2307/3546343 CrossRefGoogle Scholar
  21. Luigi G, Bugoni L, Fonseca-Neto FP, Teixeira DM (2008) Biologia e conservação do petrel-de-trindade, Pterodroma arminjoniana, na ilha da Trindade, Atlântico sul. In: Mohr LV, Castro JWA, Costa PMS, Alves RJV (eds) Ilhas oceânicas brasileiras: da pesquisa ao manejo, vol. 2. Ministério do Meio Ambiente, BrasíliaGoogle Scholar
  22. Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. doi: 10.1016/0016-7037(84)90204-7 CrossRefGoogle Scholar
  23. Nisbet ICT, Montoya JP, Burger J, Hatch JJ (2002) Use of stables isotopes to investigate individual differences in diets and mercury exposures among Common terns Sterna hirundo in breeding and wintering grounds. Mar Ecol Prog Ser 242:267–274. doi: 10.3354/meps242267 CrossRefGoogle Scholar
  24. Owens NJP (1987) Natural variation in 15N in the marine environment. Adv Mar Biol 24:389–451. doi: 10.1016/S0065-2881(08)60077-2 CrossRefGoogle Scholar
  25. Petersen BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320. doi: 10.1146/ CrossRefGoogle Scholar
  26. Podlesak DW, McWilliams SR, Hatch KA (2005) Stable isotopes in breath, blood, feces and feathers can indicate intra-individual changes in the diet of migratory songbirds. Oecologia 142:501–510. doi: 10.1007/s00442-004-1737-6 CrossRefGoogle Scholar
  27. Quillfeldt P, Masello JF, Strange IJ (2003) Breeding biology of the Thin-billed prion Pachyptila belcheri at New Island, Falkland Islands, in the poor season 2002/2003: egg desertion, breeding success and chick provisioning. Polar Biol 26:746–752. doi: 10.1007/s00300-003-0544-6 CrossRefGoogle Scholar
  28. Quillfeldt P, McGill RAR, Furness RW (2005) Diet and foraging areas of Southern Ocean seabirds and their prey inferred from stable isotopes: review and case study of Wilson’s storm-petrel. Mar Ecol Prog Ser 295:295–304. doi: 10.3354/meps295295 CrossRefGoogle Scholar
  29. Quillfeldt P, Masello JF, Strange IJ, Buchanan KL (2006) Begging and provisioning of Thin-billed prions Pachyptila belcheri is related to testosterone and corticosterone. Anim Behav 71:1359–1369. doi: 10.1016/j.anbehav.2005.09.015 CrossRefGoogle Scholar
  30. Quillfeldt P, Strange IJ, Masello JF (2007a) Sea surface temperatures and behavioural buffering capacity in Thin-billed prions Pachyptila belcheri: breeding success, provisioning and chick begging. J Avian Biol 38:298–308CrossRefGoogle Scholar
  31. Quillfeldt P, Strange IJ, Segelbacher G, Masello JF (2007b) Male and female contributions to provisioning rates of Thin-billed prions Pachyptila belcheri in the South Atlantic. J Ornithol 148:367–372. doi: 10.1007/s10336-007-0138-0 CrossRefGoogle Scholar
  32. Quillfeldt P, Poisbleau M, Chastel O, Masello JF (2007c) Corticosterone in Thin-billed prion Pachyptila belcheri chicks: diel rhythm, timing of fledging and nutritional stress. Naturwissenschaften 94:919–925. doi: 10.1007/s00114-007-0275-6 CrossRefGoogle Scholar
  33. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263. doi: 10.1016/j.tree.2004.03.017 CrossRefGoogle Scholar
  34. Strange I (1980) The Thin-billed prion, Pachyptila belcheri, at New Island, Falkland Islands. Gerfaut 70:411–445Google Scholar

Copyright information

© The Author(s) 2008

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Petra Quillfeldt
    • 1
    Email author
  • Leandro Bugoni
    • 2
  • Rona A. R. McGill
    • 3
  • Juan F. Masello
    • 1
  • Robert W. Furness
    • 2
  1. 1.Max-Planck-Institut für Ornithologie, Vogelwarte RadolfzellRadolfzellGermany
  2. 2.Institute of Biomedical and Life Sciences, Graham Kerr BuildingUniversity of GlasgowGlasgowUK
  3. 3.Scottish Universities Environmental Research CentreGlasgowUK

Personalised recommendations