Marine Biology

, Volume 155, Issue 4, pp 421–427 | Cite as

Using three-dimensional surface area to compare the growth of two Pocilloporid coral species

  • Glen HolmesEmail author
  • Juan Ortiz
  • Paulina Kaniewska
  • Ron Johnstone
Original Paper


Many facets of coral research require coral colony surface area estimates. This study developed a relationship between the two-dimensional (2D) projected area and the three-dimensional (3D) whole colony surface area for two commonly studied Indo-Pacific coral species: Pocillopora damicornis and Stylophora pistillata. The surface index function was used to measure the growth of colonies in situ around Heron reef on the southern Great Barrier Reef. The results show that while growth between the two species was not significantly different when measured in two dimensions, the 3D area showed significantly different growth rates with S. pistillata growing at almost double the rate of P. damicornis. The study demonstrates that it is possible to make reliable estimates of the 3D surface area of entire colonies of these complex branching coral species, using the plan view of the coral and a pre-determined surface index function. In addition, this study shows that the 3D surface area provides a more useful measure of colony growth than the traditional methods of either 2D area or longest dimension.


Colony Size Great Barrier Reef Reef Flat Coral Species Colony Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Selina Ward and Ove Hoegh-Guldberg from The University of Queensland and Merrick Ekins from the Queensland Museum for access to coral skeletons and to the three anonymous reviewers for comments on the draft manuscript. All experiments undertaken within this study comply with the current laws of Australia, the country in which they were performed.


  1. Alcala MLR, Vogt H (1997) Approximation of coral reef surfaces using standardized growth forms and video counts. Proceedings of the 8th International Coral Reef Symposium 2:1453–1458Google Scholar
  2. Bak RPM, Meesters EH (1999) Population structure as a response of coral communities to global change (1). Am Zool 39:56–65CrossRefGoogle Scholar
  3. Bythell JC, Pan P, Lee J (2001) Three-dimensional morphometric measurements of reef corals using underwater photogrammetry techniques. Coral Reefs 20:193–199. doi: 10.1007/s003380100157 CrossRefGoogle Scholar
  4. Chancerelle Y (2000) Méthodes d’ estimation des surfaces développées de coraux scléractiniaires à l’échelle d’une colonie ou d’un peuplement. Oceanol Acta 23:211–219. doi: 10.1016/S0399-1784(00)00125-0 CrossRefGoogle Scholar
  5. Cocito S, Sgorbini S, Peirano A, Valle M (2003) 3-D reconstruction of biological objects using underwater video technique and image processing. J Exp Mar Biol Ecol 297:57–70. doi: 10.1016/S0022-0981(03)00369-1 CrossRefGoogle Scholar
  6. Courtney LA, Fisher WS, Raimondo S, Oliver LM, Davis WP (2007) Estimating 3-dimensional colony surface area of field corals. J Exp Mar Biol Ecol 351:234–242. doi: 10.1016/j.jembe.2007.06.021 CrossRefGoogle Scholar
  7. Dahl AL (1973) Surface-area in ecological analysis—quantification of benthic coral reef algae. Mar Biol (Berl) 23:239–249. doi: 10.1007/BF00389331 CrossRefGoogle Scholar
  8. Edmunds PJ, Gates RD (2002) Normalizing physiological data for scleractinian corals. Coral Reefs 21:193–197Google Scholar
  9. Hood GM (2005) PopTools version 2.6.7. URL
  10. Hoegh-Guldberg O (1988) A method for determining the surface area of corals. Coral Reefs 7:113–116. doi: 10.1007/BF00300970 CrossRefGoogle Scholar
  11. Hughes TP, Jackson JBC (1985) Population dynamics and life histories of foliaceous corals. Ecol Monogr 55:141–166. doi: 10.2307/1942555 CrossRefGoogle Scholar
  12. Hughes TP, Connell JH (1987) Population dynamics based on size or age? a reef-coral analysis. Am Nat 129:818–829. doi: 10.1086/284677 CrossRefGoogle Scholar
  13. Jokiel P (1978) Effects of water motion on reef corals. J Exp Mar Biol Ecol 35:87–97. doi: 10.1016/0022-0981(78)90092-8 CrossRefGoogle Scholar
  14. Kaandorp JA, Sloot PMA, Merks RMH, Bak RPM, Vermeij MJA, Maier C (2005) Morphogenesis of the branching reef coral Madracis mirabilis. Proc R Soc Lond B Biol Sci 272:127–133. doi: 10.1098/rspb.2004.2934 CrossRefGoogle Scholar
  15. Kanwisher JW, Wainwright SA (1967) Oxygen balance in some reef corals. Biol Bull 133:378–390. doi: 10.2307/1539833 CrossRefGoogle Scholar
  16. Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269. doi: 10.1016/j.cageo.2005.11.009 CrossRefGoogle Scholar
  17. Loya Y (1976a) Skeletal regeneration in a Red-Sea scleractinian coral population. Nature 261:490–491. doi: 10.1038/261490a0 CrossRefGoogle Scholar
  18. Loya Y (1976b) The Red Sea coral Stylophora pistillata is an r strategist. Nature 259:478–480. doi: 10.1038/259478a0 CrossRefGoogle Scholar
  19. Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263. doi: 10.2307/1933661 CrossRefGoogle Scholar
  20. Meesters EH, Hilterman M, Kardinaal E, Keetman M, deVries M, Bak RPM (2001) Colony size-frequency distributions of scleractinian coral populations: spatial and interspecific variation. Mar Ecol Prog Ser 209:43–54. doi: 10.3354/meps209043 CrossRefGoogle Scholar
  21. Meyer JL, Schultz (1985) Tissue condition and growth-rate of corals associated with schooling fish. Limnol Oceanogr 30:157–166CrossRefGoogle Scholar
  22. Muko S, Kawasaki K, Takasu ST, Shigeda N (2000) Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull Mar Sci 66:225–239Google Scholar
  23. Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291–320. doi: 10.2307/1943285 CrossRefGoogle Scholar
  24. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopira damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74. doi: 10.1016/S0022-0981(05)80006-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Glen Holmes
    • 1
    Email author
  • Juan Ortiz
    • 1
  • Paulina Kaniewska
    • 1
  • Ron Johnstone
    • 1
  1. 1.The University of Queensland, Centre for Marine StudiesSt LuciaAustralia

Personalised recommendations