Advertisement

Marine Biology

, Volume 155, Issue 4, pp 399–412 | Cite as

Patterns of mtDNA diversity in North Atlantic populations of the mussel Mytilus edulis

  • Cynthia RiginosEmail author
  • Christine M. Henzler
Original Paper

Abstract

Patterns of (female) mitochondrial DNA diversity were investigated in the blue mussel Mytilus edulis. Mytilus edulis is a ubiquitous member of contemporary North Atlantic hard-substrate communities and well represented in studies of this region. Mytilus edulis was surveyed in North America and Europe, as well as mid-Atlantic sites in Greenland, Iceland, and the Faroe Islands. Mitochondrial DNA sequences revealed considerable population structure but no monophyly of haplotypes between any major regions. Coalescent analyses suggest that migration across the Atlantic Ocean has prominently been from North American source populations and that Greenland was colonized recently and exclusively from North America. In North America, there was support for two regional groups along the North American coastline. Surprisingly, we also found evidence of recombination between some Mytilus edulis and Mytilus galloprovincialis female mtDNA sequences, particularly in northern Europe.

Keywords

Mytilus Edulis North American Population Faroe Island Macoma Balthica Postglacial Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the anonymous reviewers and associate editor S. Uthicke along with C. W. Cunningham, P. D. Rawson, and T. Ridgway for comments. D. A. Methven and M. J. Dadswell kindly sent mussel samples. D. Wang, B.Y. Kong, and S. K. Huber assisted in the lab. Part of this work was carried out by using the resources of the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation. This project was funded by the Duke University program in Molecular Evolution and Comparative Genomics and the National Science Foundation DEB-0316814 to CR. In addition, this project was supported by funds from Duke University under an award from NSF. The findings, opinions, and recommendations expressed therein are those of the authors and are not necessarily those of Duke University or NSF.

Supplementary material

227_2008_1038_MOESM1_ESM.doc (57 kb)
Supplementary data (DOC 40 kb)

References

  1. Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543PubMedGoogle Scholar
  2. Andrews JT (1972) Recent and fossil growth rates of marine bivalves, Canadian Arctic, and late-Quaternary Arctic marine environments. Palaeogeogr Palaeoclimatol Palaeoecol 11:157–176. doi: 10.1016/0031-0182(72)90064-8 CrossRefGoogle Scholar
  3. Bayne BL (1965) Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.). Ophelia 2:1–47CrossRefGoogle Scholar
  4. Becker BJ, Levin LA, Fodrie FJ, McMillan PA (2007) Complex larval connectivity patterns among marine invertebrate populations. Proc Natl Acad Sci USA 104:3267–3272. doi: 10.1073/pnas.0611651104 CrossRefGoogle Scholar
  5. Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175. doi: 10.3354/meps303167 CrossRefGoogle Scholar
  6. Bigg GR, Cunningham CW, Ottersen G, Pogson GH, Wadley MR, Williamson P (2008) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proc R Soc Lond B Biol Sci 275:163–172. doi: 10.1098/rspb.2007.1153 CrossRefGoogle Scholar
  7. Burzynski A, Zbawicka M, Skibinski DOF, Wenne R (2003) Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Mol Biol Evol 20:388–392. doi: 10.1093/molbev/msg058 CrossRefGoogle Scholar
  8. Chopin T, Bird CJ, Murphy CA, Osborne JA, Patwary MU, Floc’h J-Y (1996) A molecular investigation of polymorphism in the North Atlantic red alga Chondrus crispus (Gigartinales). Phycological Res 44:69–80. doi: 10.1111/j.1440-1835.1996.tb00378.x CrossRefGoogle Scholar
  9. Comesaña AS, Toro JE, Innes DJ, Thompson RJ (1999) A molecular approach to the ecology of a mussel (Mytilis edulis – M. trossulus) hybrid zone on the east coast of Newfoundland, Canada. Mar Biol (Berl) 133:213–221. doi: 10.1007/s002270050460 CrossRefGoogle Scholar
  10. Cunningham CW, Collins TM (1998) Beyond area relationships: extinction and recolonization in molecular marine biogeography. In: DeSalle R, Schierwater B (eds) Molecular approaches to ecology and evolution. Birkhäuser, Boston, pp 297–321CrossRefGoogle Scholar
  11. Dahlgren TG, Weinberg JR, Halanych KM (2000) Phylogeography of the ocean quahog (Arctica islandica): influences of paleoclimate on genetic diversity and species range. Mar Biol (Berl) 137:487–495. doi: 10.1007/s002270000342 CrossRefGoogle Scholar
  12. Dodson JJ, Tremblay S, Colombani F, Carscadden JE, Lecomte F (2007) Trans-Arctic dispersals and the evolution of a circumpolar marine fish species complex, the capelin (Mallotus villosus). Mol Ecol 16:5030–5043. doi: 10.1111/j.1365-294X.2007.03559.x CrossRefGoogle Scholar
  13. Dorian CC, Balco GA, Kaplan MR, Kreutz KJ, Wright JD, Borns HWJ (2001) Stratigraphy, paleoceanography, chronology, and environment during deglaciation of eastern Maine. In: Weddle T, Retelle M (eds) Deglacial history and relative sea-level changes, Northern New England and adjacent Canada. Geological Society of America Special Paper 351. Geological Society of America, Boulder, pp 215–242Google Scholar
  14. Dyke AS, Dale JE, McNeely RN (1996) Marine molluscs as indicators of environmental change in glaciated North America and Greenland during the last 18, 000 years. Geogr Phys Quatern 50:125–184Google Scholar
  15. Dyke AS, Andrews JT, Clark PU, England JH, Miller GH, Shaw J et al (2002) The Laurentide and Innuitian ice sheets during the Last Glacial Maximum. Quatern Sci Rev 21:9–31. doi: 10.1016/S0277-3791(01)00095-6 CrossRefGoogle Scholar
  16. Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136:343–359PubMedPubMedCentralGoogle Scholar
  17. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  18. Feder HM, Norton DM, Geller JB (2003) A review of apparent 20th century changes in the presence of mussels (Mytilus trossulus) and macroalgae in Arctic Alaska, and of historical and paleontological evidence used to relate mollusc distributions to climate change. Arctic 56:391–407CrossRefGoogle Scholar
  19. Felsenstein J (1993) PHYLIP (phylogeny inference package) version 3.573c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  20. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  21. Gaymer CF, Himmelman JH (2002) Mussel beds in deeper water provide an unusual situation for competitive interactions between the seastars Leptasterias polaris and Asterias vulgaris. J Exp Mar Biol Ecol 277:13–24. doi: 10.1016/S0022-0981(02)00234-4 CrossRefGoogle Scholar
  22. Gilg MR, Hilbish TJ (2003) The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84:2989–2998. doi: 10.1890/02-0498 CrossRefGoogle Scholar
  23. Gordillo S, Aiken AE (2001) Postglacial succession and palaeoecology of Late Quaternary macrofaunal assemblages from the central Canadian Arctic Archipelago. Boreas 30:61–72. doi: 10.1080/030094801300062329 CrossRefGoogle Scholar
  24. Goudet J (1995) FSTAT (version 1.2): a program to calculate F-statistics. J Hered 86:485CrossRefGoogle Scholar
  25. Govindarajan AF, Halanych KK, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol (Berl) 146:213–222. doi: 10.1007/s00227-004-1434-3 CrossRefGoogle Scholar
  26. Hare MP, Weinberg JR (2005) Phylogeography of surfclams, Spisula solidissima, in the western North Atlantic based on mitochondrial and nuclear DNA sequences. Mar Biol (Berl) 146:707–716. doi: 10.1007/s00227-004-1471-y CrossRefGoogle Scholar
  27. Hemmer-Hansen J, Nielsen EE, Grønkjaer P, Loeschcke V (2007) Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder (Platichthys flesus L.). Mol Ecol 16:3104–3118. doi: 10.1111/j.1365-294X.2007.03367.x CrossRefGoogle Scholar
  28. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc Lond 58:247–276CrossRefGoogle Scholar
  29. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi: 10.1038/35016000 CrossRefGoogle Scholar
  30. Hey J, Nielsen R (2004) Multilocus methods for estimating populations sizes, migration rates and divergence times, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760. doi: 10.1534/genetics.103.024182 CrossRefGoogle Scholar
  31. Hickerson MJ, Cunningham CW (2006) Nearshore fish (Pholis gunnellus) persists across the North Atlantic through multiple glacial episodes. Mol Ecol 15:4095–4107. doi: 10.1111/j.1365-294X.2006.03085.x CrossRefGoogle Scholar
  32. Hoeh WR, Stewart DT, Saavedra C, Sutherland BW, Zouros E (1997) Phylogenetic evidence for role-reversals of gender-associated mitochondrial DNA in Mytilus (Bivalvia: Mytilidae). Mol Biol Evol 14:959–967CrossRefGoogle Scholar
  33. Hummel H, Colucci F, Bogaards RH, Strelkov P (2001) Genetic traits in the bivalve Mytilus from Europe, with an emphasis on Arctic populations. Polar Biol 24:44–52. doi: 10.1007/s003000000174 CrossRefGoogle Scholar
  34. Ingolfsson A (1992) The origin of the rocky shore fauna of Iceland and the Canadian Maritimes. J Biogeogr 19:705–712. doi: 10.2307/2845711 CrossRefGoogle Scholar
  35. Koehn RK, Hall JG, Innes DJ, Zera AJ (1984) Genetic differentiation of Mytilus edulis in eastern North America. Mar Biol (Berl) 79:117–126. doi: 10.1007/BF00951820 CrossRefGoogle Scholar
  36. Ladoukakis ED, Zouros E (2001) Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Mol Biol Evol 18:1168–1175CrossRefGoogle Scholar
  37. Littorin B, Gilek M (1999) Vertical patterns in biomass, size structure, growth and recruitment of Mytilus edulis in an archipelago area in the Northern Baltic Sea proper. Ophelia 50:93–112CrossRefGoogle Scholar
  38. Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229. doi: 10.1046/j.1365-294X.2003.01872.x CrossRefGoogle Scholar
  39. Marincovich L, Gladenkov AY (1999) Evidence for an early opening of the Bering Strait. Nature 397:149–151. doi: 10.1038/16446 CrossRefGoogle Scholar
  40. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262. doi: 10.1093/bioinformatics/bth490 CrossRefGoogle Scholar
  41. McQuaid CD, Philips TE (2000) Limited wind-driven dispersal of intertidal mussel larvae: in situ evidence from the plankton and the spread of the invasive species Mytilus galloprovincialis in South Africa. Mar Ecol Prog Ser 201:211–220. doi: 10.3354/meps201211 CrossRefGoogle Scholar
  42. Miller GH, Wolfe AP, Steig EJ, Sauer PE, Kaplan MR, Briner JP (2002) The Goldilocks dilemma: big ice, little ice, or “just-right” ice in the Eastern Canadian Arctic. Quat Sci Rev 21:33–48. doi: 10.1016/S0277-3791(01)00085-3 CrossRefGoogle Scholar
  43. Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov Chain Monte Carlo approach. Genetics 158:885–896PubMedPubMedCentralGoogle Scholar
  44. Nikula R, Strelkov P, Väinölä R (2007) Diversity and trans-Arctic invasion history of mitochondrial lineages in the north Atlantic Macoma balthica complex (Bivalvia: Tellinidae). Evolution 61:928–941. doi: 10.1111/j.1558-5646.2007.00066.x CrossRefGoogle Scholar
  45. Norton DM, Feder HM (2006) Mytilus thermophily? Mar Ecol Prog Ser 309:301–303Google Scholar
  46. Paine RT (1976) Biological observations on a subtidal Mytilus californianus bed. Veliger 19:125–130Google Scholar
  47. Peacock JD (1989) Marine molluscs and late Quaternary environmental studies with particular reference to the late-glacial period of northwest Europe: a review. Quat Sci Rev 8:179–192. doi: 10.1016/0277-3791(89)90006-1 CrossRefGoogle Scholar
  48. Pflaumann U, Sarnthein M, Chapman M, d’Abreu L, Funnell B, Huels M et al (2003) Glacial North Atlantic: sea-surface conditions reconstructed by GLAMAP 2000. Paleoceanography 18:1065. doi: 10.1029/2002PA000774 CrossRefGoogle Scholar
  49. Quesada H, Wenne R, Skibinski DOF (1995) Differential introgression of mitochondrial DNA across species boundaries within the marine mussel genus Mytilus. Proc R Soc Lond B Biol Sci 262:51–56. doi: 10.1098/rspb.1995.0175 CrossRefGoogle Scholar
  50. Quesada H, Gallagher C, Skibinski DAG, Skibinski DOF (1998) Patterns of polymorphism and gene flow of gender-associated mitochondrial DNA lineages in European mussel populations. Mol Ecol 7:1041–1051. doi: 10.1046/j.1365-294x.1998.00428.x CrossRefGoogle Scholar
  51. Quesada H, Wenne R, Skibinski DOF (1999) Interspecies transfer of female mitochondrial DNA is coupled with role-reversals and departure from neutrality in the mussel Mytilus trossulus. Mol Biol Evol 16:655–665CrossRefGoogle Scholar
  52. Rawson PD (2005) Nonhomologous recombination between the large unassigned region of the male and female mitochondrial genomes in the mussels, Mytilus trossulus. J Mol Evol 61:717–732. doi: 10.1007/s00239-004-0035-6 CrossRefGoogle Scholar
  53. Rawson PD, Hilbish TJ (1998) Asymmetric introgression of mitochondrial DNA among European populations of blue mussels (Mytilus spp.). Evolution 52:100–108. doi: 10.2307/2410924 CrossRefGoogle Scholar
  54. Riginos C, Sukhdeo K, Cunningham CW (2002) Evidence for selection at multiple allozyme loci across a mussel hybrid zone. Mol Biol Evol 19:347–351CrossRefGoogle Scholar
  55. Riginos C, Hickerson MJ, Henzler CM, Cunningham CW (2004) Differential patterns of male and female mtDNA exchange across the Atlantic Ocean in the blue mussel, Mytilus edulis. Evolution 58:2438–2451CrossRefGoogle Scholar
  56. Roman J, Palumbi SR (2004) A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol 13:2891–2898. doi: 10.1111/j.1365-294X.2004.02255.x CrossRefGoogle Scholar
  57. Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390. doi: 10.1038/nrg795 CrossRefGoogle Scholar
  58. Saavedra C, Reyero M-I, Zouros E (1997) Male-dependent doubly uniparental inheritance of mitochondrial DNA and female-dependent sex-ratio in the mussel Mytilus galloprovincialis. Genetics 145:1073–1082PubMedPubMedCentralGoogle Scholar
  59. Sanjuan A, Zapata C, Alvarez G (1994) Mytilus galloprovincialis and M. edulis on the coasts of the Iberian Peninsula. Mar Ecol Prog Ser 113:131–146. doi: 10.3354/meps113131 CrossRefGoogle Scholar
  60. Schierup MH, Hein J (2000) Consequences of recombination on traditional phylogenetic analysis. Genetics 156:879–891PubMedPubMedCentralGoogle Scholar
  61. Schneider S, Roessli D, Excoffier L (2001) Arlequin version 2.001: a software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  62. Seed R (1976) Ecology. In: Bayne B (ed) Marine mussels: their ecology and physiology. Cambridge University Press, Cambridge, pp 13–56Google Scholar
  63. Sejrup HP, Hjelstuen BO, Dahlgren KIT, Haflidason H, Kuijpers A, Nygard A et al (2005) Pleistocene glacial history of the NW European continental margin. Mar Pet Geol 22:1111–1129. doi: 10.1016/j.marpetgeo.2004.09.007 CrossRefGoogle Scholar
  64. Stea RR, Boyd R, Fader GBJ, Courtney RC, Scott DB, Pecore SS (1994) Morphology and seismic stratigraphy of the inner continental shelf off Nova Scotia, Canada: evidence for a -65 m lowstand between 11,650 and 11,250 C14 yr B.P. Mar Geol 117:135–154. doi: 10.1016/0025-3227(94)90011-6 CrossRefGoogle Scholar
  65. Strelkov P, Nikula R, Väinölä R (2007) Macoma balthica in the White and Barents Seas: properties of a widespread marine hybrid swarm (Mollusca: Bivalvia). Mol Ecol 16:4110–4127. doi: 10.1111/j.1365-294X.2007.03463.x CrossRefGoogle Scholar
  66. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  67. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  68. Väinölä R (2003) Repeated trans-Arctic invasions in littoral bivalves: molecular zoogeography of the Macoma balthica complex. Mar Biol (Berl) 143:935–946. doi: 10.1007/s00227-003-1137-1 CrossRefGoogle Scholar
  69. Van Oppen MJH, Draisma SGA, Olsen JL, Stam WT (1995) Multiple trans-Arctic passages of the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar Biol (Berl) 123:179–188. doi: 10.1007/BF00350338 CrossRefGoogle Scholar
  70. Varvio S-L, Koehn RK, Väinölä R (1988) Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Mar Biol (Berl) 98:51–60. doi: 10.1007/BF00392658 CrossRefGoogle Scholar
  71. Vermeij GJ (1991) Anatomy of an invasion: the trans-Arctic interchange. Paleobiology 17:281–307CrossRefGoogle Scholar
  72. Vermeij GJ (2005) From Europe to America: pliocene to recent trans-Atlantic expansion of cold-water North Atlantic molluscs. Proc R Soc Lond B Biol Sci 272:2545–2550. doi: 10.1098/rspb.2005.3177 CrossRefGoogle Scholar
  73. Wares JP (2001) Intraspecific variation and geographic isolation in Idotea balthica (Isopoda: Valvifera). J Crust Biol 21:1007–1013. doi: 10.1651/0278-0372(2001)021[1007:IVAGII]2.0.CO;2 CrossRefGoogle Scholar
  74. Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55:2455–2469CrossRefGoogle Scholar
  75. Wares JP, Goldwater DS, Kong BY, Cunningham CW (2002) Refuting a controversial case of human-mediated marine species introduction. Ecol Lett 5:577–584. doi: 10.1046/j.1461-0248.2002.00359.x CrossRefGoogle Scholar
  76. Weetman D, Hauser L, Bayes MK, Ellis JR, Shaw PW (2006) Genetic population structure across a range of geographic scales in the commercially exploited marine gastropod Buccinum undatum. Mar Ecol Prog Ser 317:157–169. doi: 10.3354/meps317157 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Integrative BiologyUniversity of QueenslandSt LuciaAustralia
  2. 2.Department of BiologyDuke UniversityDurhamUSA
  3. 3.Marine Science InstituteUniversity of California Santa BarbaraSanta BarbaraUSA

Personalised recommendations