Marine Biology

, Volume 155, Issue 2, pp 173–182 | Cite as

Major bleaching events can lead to increased thermal tolerance in corals

  • J. A. MaynardEmail author
  • K. R. N. Anthony
  • P. A. Marshall
  • I. Masiri
Original Paper


Climate change is a major threat to coral reef ecosystems worldwide. A key determinant of the fate of reef corals in a warming climate is their capacity to tolerate increasing thermal stress. Here, an increase in thermal tolerance is demonstrated for three major coral genera (Acropora, Pocillopora and Porites) following the extensive mass bleaching event that occurred on the Great Barrier Reef (Australia) in 1998. During the subsequent and more severe thermal stress event in 2002, bleaching severity was 30–100% lower than predicted from the relationship between severity and thermal stress in 1998, despite higher solar irradiances during the 2002 thermal event. Coral genera most susceptible to thermal stress (Pocillopora and Acropora) showed the greatest increase in tolerance. Although bleaching was severe in 1998, whole-colony mortality was low at most study sites. Therefore, observed increases in thermal tolerance cannot be explained by selective mortality alone, suggesting a capacity for acclimatization or adaptation. Although the vulnerability of coral reefs remains largely dependent on the rate and extent of climate change, such increase in thermal tolerance may delay the onset of mass coral mortalities in time for the implementation of low-emission scenarios and effective management.


Coral Reef Great Barrier Reef Advance Very High Resolution Radiometer Advance Very High Resolution Radiometer Thermal Tolerance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank P. J. Turner from CSIRO for help with SST analyses, R. Berkelmans for providing bleaching survey and in situ temperature data from the Australian Institute of Marine Science, and Manuel Nunez for data on surface irradiance, A. Baird, T. Hughes, D. Bellwood, D. Blair, C. Smith and A. Kerswell for comments on the manuscript and M. Hoogenboom for assistance with graphs. The Australian Greenhouse Office, Great Barrier Reef Marine Park Authority, and grants from the University of Melbourne and the Applied Environmental Decision Analysis CERF Hub (JAM and PAM) all supported this work, as well as grants from the Australian Research Council and ARC Centre of Excellence for Coral Reef Studies to KRNA and IM.


  1. Access Economics (2007) Measuring the economic and financial value of the Great Barrier Reef Marine Park 2005/2006. Report by Access Economics Pty Limited for Great Barrier Reef Marine Park Authority. Great Barrier Reef Marine Park Authority, TownsvilleGoogle Scholar
  2. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253. doi: 10.1016/S0022-0981(00)00237-9 CrossRefGoogle Scholar
  3. Anthony KRN, Ridd PV, Orpin A, Larcombe P, Lough JM (2004) Temporal variation in light availability in coastal benthic habitats: effects of clouds, turbidity and tides. Limnol Oceanogr 49:2201–2211CrossRefGoogle Scholar
  4. Anthony KRN, Connolly SR, Hoegh-Guldberg O (2007) Bleaching, energetics, and coral mortality risk: effects of temperature, light, and sediment regime. Limnol Oceanogr 52:716–726CrossRefGoogle Scholar
  5. Anthony KRN, Hoogenboom M, Grottoli A, Middlebrook R, Maynard JA (in review) Energetics approach to predicting coral mortality risk from bleaching. Functional EcologyGoogle Scholar
  6. Ayre DJ, Hughes TP (2004) Climate change, genotypic diversity and gene flow in reef-building corals. Ecol Lett 7:273–278. doi: 10.1111/j.1461-0248.2004.00585.x CrossRefGoogle Scholar
  7. Baird AH, Marshall PA (1998) Mass bleaching of corals on the Great Barrier Reef. Coral Reefs 17:376. doi: 10.1007/s003380050142 CrossRefGoogle Scholar
  8. Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141. doi: 10.3354/meps237133 CrossRefGoogle Scholar
  9. Baird AH, Cumbo VR, Leggat W, Rodriguez-Lanetty M (2007) Fidelity and flexibility in coral symbioses. Mar Ecol Prog Ser 347:307–309. doi: 10.3354/meps07220 CrossRefGoogle Scholar
  10. Baker AC (2001) Ecosystems: reef corals bleach to survive change. Nature 411:765–766. doi: 10.1038/35081151 CrossRefGoogle Scholar
  11. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689. doi: 10.1146/annurev.ecolsys.34.011802.132417 CrossRefGoogle Scholar
  12. Baker AC, Starger CJ, McClanahan T, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 430:741. doi: 10.1038/430741a CrossRefGoogle Scholar
  13. Berkelmans R, Oliver JK (1999) Large-scale bleaching of corals on the Great Barrier Reef. Coral Reefs 18:55–66. doi: 10.1007/s003380050154 CrossRefGoogle Scholar
  14. Berkelmans R, van Oppen M (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273:2305–2312. doi: 10.1098/rspb.2006.3567 CrossRefGoogle Scholar
  15. Berkelmans R, De’ath G, Kininmonth S, Skirving WJ (2004) A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: spatial correlation, patterns, and predictions. Coral Reefs 23:74–83. doi: 10.1007/s00338-003-0353-y CrossRefGoogle Scholar
  16. Brown BE (1997) Adaptation of reef corals to physical environmental stress. Adv Mar Biol 31:221–299. doi: 10.1016/S0065-2881(08)60224-2 CrossRefGoogle Scholar
  17. Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129. doi: 10.3354/meps242119 CrossRefGoogle Scholar
  18. Coles SL, Brown BE (2003) Coral bleaching-capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223. doi: 10.1016/S0065-2881(03)46004-5 CrossRefGoogle Scholar
  19. Dunne RP, Brown BE (2001) The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998. Coral Reefs 20:201–210Google Scholar
  20. Edmunds PJ (1994) Evidence that reef-wide patterns of coral bleaching may be the result of the distribution of bleaching susceptible clones. Mar Biol (Berl) 121:137–142. doi: 10.1007/BF00349482 CrossRefGoogle Scholar
  21. English S, Wilkinson CR, Baker V (2004) Survey manual for tropical marine resources, 2nd edn. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  22. Fautin DG, Buddemeier RW (2004) Adaptive bleaching: a general phenomenon. Hydrobiologia 530–31:459–467. doi: 10.1007/s10750-004-2642-z Google Scholar
  23. Ferrier-Pages C, Allemand D, Gattuso JP, Jaubert J, Rassoulzadegan R (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: Effects of light and ciliate density. Limnol Oceanogr 43:1639–1648CrossRefGoogle Scholar
  24. Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65. doi: 10.1007/s003380100146 CrossRefGoogle Scholar
  25. Garrett KA, Mundt CC (1999) Epidemiology in mixed host populations. Phytopathology 89:984–990. doi: 10.1094/PHYTO.1999.89.11.984 CrossRefGoogle Scholar
  26. Gates RD, Edmunds PJ (1999) The physiological mechanisms of acclimatization in tropical reef corals. Am Zool 39:30–43CrossRefGoogle Scholar
  27. Gleeson MW, Strong AE (1995) Applying MCSST to coral-reef bleaching. Adv Space Res 16:151–154. doi: 10.1016/0273-1177(95)00396-V CrossRefGoogle Scholar
  28. Glynn PW, Mate JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Equador during the 1997–1998 El Nino Southern Oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109Google Scholar
  29. Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol (Berl) 145:621–631. doi: 10.1007/s00227-004-1337-3 CrossRefGoogle Scholar
  30. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866. doi: 10.1071/MF99078 CrossRefGoogle Scholar
  31. Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–31Google Scholar
  32. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  33. Hughes TP, Tanner JE (2000) Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81:2250–2263CrossRefGoogle Scholar
  34. Hughes TP, Baird AH, Dinsdale EA, Moltschaniwskyj NA, Pratchett MS, Tanner JE et al (2000) Supply-side ecology works both ways: the link between benthic adults and larval recruits. Ecology 81:2241–2249CrossRefGoogle Scholar
  35. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi: 10.1126/science.1085046 CrossRefGoogle Scholar
  36. IPCC (2007). Clim Change 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC Geneva., Geneva
  37. Jimenez C, Cortes J, Leon A, Ruiz E (2001) Coral bleaching and mortality associated with the 1997–98 El Nino in an upwelling environment in the eastern Pacific (Gulf of Papagyo, Costa Rica). Bull Mar Sci 69:151–169Google Scholar
  38. Kennedy VS, Twilley RR, Kleypas JA, Cowan JH, Hare SR (2002) Coastal and marine ecosystems and global climate change: potential effects on US resources. Pew Center on Global Climate Change, ArlingtonGoogle Scholar
  39. Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 98:5419–5425. doi: 10.1073/pnas.091092998 CrossRefGoogle Scholar
  40. Lough JM (2000) 1997–98: unprecedented thermal stress to coral reefs? Geophys Res Lett 27:3901–3904. doi: 10.1029/2000GL011715 CrossRefGoogle Scholar
  41. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163. doi: 10.1007/s003380000086 CrossRefGoogle Scholar
  42. Masiri I, Nunez M, Weller E (2008) A ten-year climatology of solar radiation for the Great Barrier Reef: implications for recent mass coral bleaching events. Int J Remote Sens (in press)Google Scholar
  43. Maynard JA (2004) Spatial and temporal variation in bleaching susceptibility and the ability of SST variables to describe patterns in bleaching response, 1998 and 2002 events, central GBR. Thesis. James Cook UniversityGoogle Scholar
  44. McClanahan TR, Baird AH, Marshall A, Toscano MA (2004) Coral bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Mar Pollut Bull 48:327–335. doi: 10.1016/j.marpolbul.2003.08.024 CrossRefGoogle Scholar
  45. Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world: coral reefs, vol 25. Elsevier, Amsterdam, pp 75–87Google Scholar
  46. Pinker RT, Laszlo I (1991) Modeling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol 31:194–211. doi:10.1175/1520-0450(1992)031≤0194:MSSIFS≥2.0.CO;2CrossRefGoogle Scholar
  47. Pittock B (2003) Climate change: an Australian guide to the science and potential impacts. Australian Greenhouse Office, CanberraGoogle Scholar
  48. Podesta GP, Glynn PW (2001) The 1997–98 El Nino event in Panama and Galapagos: an update of thermal stress indices relative to coral bleaching. Bull Mar Sci 69:43–59Google Scholar
  49. Riegl B (1999) Corals in a non-reef setting in the southern Arabian Gulf (Dubai, UAE): fauna and community structure in response to recurring mass mortality. Coral Reefs 18:63–73. doi: 10.1007/s003380050156 CrossRefGoogle Scholar
  50. Riegl B (2002) Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Mar Biol (Berl) 40:29–40Google Scholar
  51. Rowan R (2004) Coral bleaching—thermal adaptation in reef coral symbionts. Nature 430:742. doi: 10.1038/430742a CrossRefGoogle Scholar
  52. Sheppard CC (2003) Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425:294–297. doi: 10.1038/nature01987 CrossRefGoogle Scholar
  53. Spencer-Davies P (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs 2:181–186Google Scholar
  54. Wilkinson CR (ed) (2002) Status of coral reefs of the world: 2002. Australian Institute of Marine Science, TownsvilleGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. A. Maynard
    • 1
    • 2
    Email author
  • K. R. N. Anthony
    • 3
  • P. A. Marshall
    • 1
  • I. Masiri
    • 4
  1. 1.Great Barrier Reef Marine Park AuthorityTownsvilleAustralia
  2. 2.Australian Centre of Excellence for Risk Analysis, School of BotanyUniversity of MelbourneMelbourneAustralia
  3. 3.Centre for Marine Studies, ARC Centre of Excellence for Coral Reef StudiesThe University of QueenslandSt LuciaAustralia
  4. 4.School of Geography and Environmental StudiesUniversity of TasmaniaHobartAustralia

Personalised recommendations