Marine Biology

, Volume 155, Issue 2, pp 147–157 | Cite as

Genetic structure at different spatial scales in the pearl oyster (Pinctada margaritifera cumingii) in French Polynesian lagoons: beware of sampling strategy and genetic patchiness

  • Sophie Arnaud-HaondEmail author
  • V. Vonau
  • C. Rouxel
  • F. Bonhomme
  • Jean Prou
  • E. Goyard
  • P. Boudry
Original Paper


In order to study further the genetic structure of the pearl oyster Pinctada margaritifera in French Polynesia with a special consideration for the sampling scale, we analyzed or re-analyzed sets of data based on nuclear DNA markers obtained at different spatial scales. At a large scale (several 1,000 km), the remote Marquesas Islands were confirmed to be significantly differentiated from Tuamotu–Gambier and Society archipelagos, with a marked difference however for the two main islands that are different from each other. At a medium scale (several 10 to several 100 km), overall homogeneity was observed within and between these two archipelagos, with some exceptions. This could be attributed both to large-scale larval dispersal and to human-driven spat translocations due to pearl oyster cultivation. These results contrast with those observed (1) at a small scale (less than 10 km) in a lagoon heavily impacted by translocation and cultural practices, where significant genetic differentiation was detected among three laying beds, and (2) at a micro scale where we detected an important variability of the genetic composition of young spat recruited on artificial collectors. Such patterns could result from a high variance in the number of genitors at the origin of each cohort, or from pre- or post-settlement selection on linked loci. Altogether, our data support the hypothesis that under certain conditions populations of bivalves may exhibit patterns of chaotic genetic patchiness at local scale, in line with the increasing report of such patchiness in marine benthic organisms. This underlines the importance of sampling scale that should be rigorously defined depending on the questions to be answered. Nevertheless, a survey of about 80 articles dealing with population genetics of marine invertebrates showed that only 35% of those studies disclosed details about the sampling strategy (particularly the area explored). These results emphasize the need for cautious interpretation of patterns of genetic structure at medium scale when rigorous sampling strategies are not deployed.


Gene Flow Atoll Larval Dispersal Pearl Oyster Wild Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank all the people who helped us to collect samples: Terii Seaman and Patrick Jilcot from the Pearl-Culture Service, Peva Levy, Claude Soyez, Marcel Matarere, Destremeau Poroi, Herle Gorager and Johan Hamblin from Ifremer and Philippe Shoun. We wish to address a very special thank to Gaby Hauamani, without whom none of the work on spat would have been possible, and Vincent Prasil for useful discussions and information about spat translocations. We thank Helen Boudry for help with the English in this manuscript, and three anonymous referees for their useful comments and suggestions. This work was supported in part by the “Contrat de développement no. 2, 2000–2003 entre l’Etat et le Territoire de Polynésie Française” and the Bureau des Ressources Génétiques (BRG).

Supplementary material

227_2008_1013_MOESM1_ESM.doc (42 kb)
Supplementary material (DOC 42 kb)


  1. Andrade SCS, Solferini VN (2007) Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection? Bot J Linn Soc 91:23–36. doi: 10.1111/j.1095-8312.2007.00782.x CrossRefGoogle Scholar
  2. Arnaud-Haond S, Bonhomme F, Blanc F (2003a) Large discrepancies in differentiation of allozymes, nuclear and mitochondrial DNA loci in recently founded Pacific populations of the pearl oyster Pinctada margaritifera. J Evol Biol 16:388–398. doi: 10.1046/j.1420-9101.2003.00549.x CrossRefGoogle Scholar
  3. Arnaud-Haond S, Boudry P, Saulnier D, Seaman T, Vonau V, Bonhomme F et al (2002) New anonymous nuclear DNA markers for the pearl oyster Pinctada margaritifera and other Pinctada species. Mol Ecol Notes 2:220–222. doi: 10.1046/j.1471-8286.2002.00199.x CrossRefGoogle Scholar
  4. Arnaud-Haond S, Vonau V, Bonhomme F, Boudry P, Prou J, Seaman T et al (2004) On the impact of cultural practices on genetic resources: evolution of the genetic composition of wild stocks of pearl oyster (Pinctada margaritifera cumingii) in French Polynesia after ten years of spat translocation. Mol Ecol 13:2001–2007. doi: 10.1111/j.1365-294X.2004.02188.x CrossRefGoogle Scholar
  5. Arnaud-Haond S, Vonau V, Bonhomme F, Boudry P, Prou J, Seaman T et al (2003b) Sustainable management of local genetic resources of the pearl oyster (Pinctada margaritifera cumingii) in French Polynesia: an evaluation of the potential impact of the cultural practice of spat collection. Aquaculture 219:181–192. doi: 10.1016/S0044-8486(02)00568-9 CrossRefGoogle Scholar
  6. Arndt A, Smith MJ (1998) Genetic diversity and population structure in two species of sea cucumber: differing pattern according to mode of development. Mol Ecol 7:1053–1064. doi: 10.1046/j.1365-294x.1998.00429.x CrossRefGoogle Scholar
  7. Bassam BJ, Caetano-Anolles G, Greshof PM (1991) Fast and sensitive silver-staining of DNA in polyacrylamide gels. Ann Biochem 196:80–83. doi: 10.1016/0003-2697(91)90120-I CrossRefGoogle Scholar
  8. Belkhir K, Borsa P, Chikhi L, N.Raufaste, Bonhomme F (1996–2001) GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome et Populations, Interactions, Adaptations, CNRS UMR5000, Université Montpellier II, Montpellier (France)Google Scholar
  9. Benzie JAH (2000) The detection of spatial variation in widespread marine species: methods and bias in the analysis of population structure in the crown of thorns starfish (Echinodermata:Asteroidea). Hydrobiologia 420:1–14. doi: 10.1023/A:1003943011631 CrossRefGoogle Scholar
  10. Benzie JAH, Smith-Keune C (2006) Microsatellite variation in Australian and Indonesian pearl oyster Pinctada maxima populations. Mar Ecol Prog Ser 314:197–211. doi: 10.3354/meps314197 CrossRefGoogle Scholar
  11. Black WC, Krafsur ES (1985) A FORTRAN program for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet 70:491–496. doi: 10.1007/BF00305981 CrossRefGoogle Scholar
  12. Blanc F, Durand P, Shine-Milhaud M (1985) Genetic varability in populations of black pearl oyster Pinctada margaritifera (Mollusque, Bivalve) de Polynésie. In: Proceedings of 5th international coral reefs congress, Tahiti 4:113–118Google Scholar
  13. Bonhomme F, Planes S (2000) Some genetic arguments about what maintains the pelagic phase in reef fishes. Environ Biol Fishes 59:365–383. doi: 10.1023/A:1026508715631 CrossRefGoogle Scholar
  14. Boudry P, Collet B, Cornette F, Hervouet V, Bonhomme F (2002) High variance in reproductive success of the Pacific oyster (Crassostrea gigas, Thunberg) revealed by microsatellite-based parentage analysis of multifactorial crosses. Aquaculture 204:283–296. doi: 10.1016/S0044-8486(01)00841-9 CrossRefGoogle Scholar
  15. Burford MO, Larson RJ (2007) Genetic heterogeneity in a single year-class from a panmictic population of adult blue rockfish (Sebastes mystinus). Mar Biol (Berl) 151:451–465. doi: 10.1007/s00227-006-0475-1 CrossRefGoogle Scholar
  16. Campton DE, Berg CJ, Robison LM, Glazer RA (1992) Genetic patchiness among populations of queen conch Strombus gigas in the Florida keys and Bimini. Fish Bull (Wash DC) 90:250–259Google Scholar
  17. Casu M, Maltagliati F, Cossu P, Lai T, Galletti MC, Castelli A et al (2005) Fine-grained spatial genetic structure in the bivalve Gemma gemma from Maine and Virginia (USA), as revealed by Inter-Simple Sequence Repeat markers. J Exp Mar Biol Ecol 325:46–54. doi: 10.1016/j.jembe.2005.04.020 CrossRefGoogle Scholar
  18. David P, Berthou P, Noel P, Jarne P (1997a) Patchy recruitment patterns in marine invertebrates: a spatial test of the density-dependent hypothesis in the bivalve Spisula ovalis. Oecologia 111:331–340. doi: 10.1007/s004420050243 CrossRefGoogle Scholar
  19. David P, Perdieu M-A, Pernod A-F, Jarne P (1997b) Fine-grained spatial and temporal population genetic structure in the marine bivalve Spisula ovalis. Evol Int J Org Evol 51(4):1318–1322. doi: 10.2307/2411061 CrossRefGoogle Scholar
  20. Desmarais E, Lannneluc I, Lagnel J (1998) Direct amplification of length polymorphism (DALP), or how to get and characterise new genetic markers in many species. Nucl Ac Res 26(6):1458–1465. doi: 10.1093/nar/26.6.1458 CrossRefGoogle Scholar
  21. Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in 7 species of fish from the Great-Barrier-Reef. Ecology 76:2373–2391. doi: 10.2307/2265814 CrossRefGoogle Scholar
  22. Durand P, Blanc F (1986) Divergence génétique chez un bivalve marin tropical: Pinctada margaritifera. Coll Nat CNRS “Biologie des populations”, pp 323–330Google Scholar
  23. Edmands S, Moberg PE, Burton RS (1996) Allozyme and mitochondrial DNA evidence of population subdivision in the purple sea urchin Strongylocentrotus purpuratus. Mar Biol (Berl) 126:443–450. doi: 10.1007/BF00354626 CrossRefGoogle Scholar
  24. Exadactylos A, Geffen AJ, Thorpe JP (1998) Population structure of the Dover sole, Solea solea L., in a background of high gene flow. J Sea Res 40:117–129. doi: 10.1016/S1385-1101(98)00015-X CrossRefGoogle Scholar
  25. Friedman KJ, Bell JD (1999) Variation in abundance of blacklip pearl oyster (Pinctada margaritifera Linne.) spat from inshore and offshore reefs in Solomon islands. Aquaculture 178:273–291. doi: 10.1016/S0044-8486(99)00129-5 CrossRefGoogle Scholar
  26. Friedman KJ, Bell JD, Tiroba G (1998) Availability of wild spat of the blacklip pearl oyster, Pinctada margaritifera, from “open” reef systems in Solomon islands. Aquaculture 167:283–299. doi: 10.1016/S0044-8486(98)00286-5 CrossRefGoogle Scholar
  27. Gaines SD, Bertness MD (1992) Dispersal of juveniles and variable recruitment in sessile marine species. Nature 360:579–580. doi: 10.1038/360579a0 CrossRefGoogle Scholar
  28. Gonzalez-Wanguemert N, Perez-Ruzafa A, Canovas F, Garcia-Charton JA, Marcos C (2007) Temporal genetic variation in populations of Diplodus sargus from the SW Mediterranean Sea. Mar Ecol Prog Ser 334:237–244. doi: 10.3354/meps334237 CrossRefGoogle Scholar
  29. Hedgecock D (1994) Does variance in reproductive success limit effective population size of marine organisms? Genet Evol Aquat Organ, pp 122–134Google Scholar
  30. Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal abilities. Evol Int J Org Evol 50(3):1167–1175. doi: 10.2307/2410657 CrossRefGoogle Scholar
  31. Holborn K, Johnson MS, Black R (1994) Population genetics of the corralivorous gastropod Drupella cornus at Ningaloo reef, Western Australia. Coral Reefs 13:33–39. doi: 10.1007/BF00426432 CrossRefGoogle Scholar
  32. Hoskin MG (1997) Effects of contrasting modes of larval development on the genetic structures of populations of three species of prosobranch gastropods. Mar Biol (Berl) 127:647–656. doi: 10.1007/s002270050055 CrossRefGoogle Scholar
  33. Hunt A (1993) Effects of contrasting patterns of larval dispersal on the genetic connectedness of local populations of two intertidal starfish, Patiriella calcar and Pexigua. Mar Ecol Prog Ser 92:179–186. doi: 10.3354/meps092179 CrossRefGoogle Scholar
  34. Johannesson K, Johannesson B, Lundgren U (1995) Strong natural-selection causes microscale allozyme variation in a marine snail. Proc Natl Acad Sci USA 92:2602–2606. doi: 10.1073/pnas.92.7.2602 CrossRefGoogle Scholar
  35. Johnson MS, Black R (1982) Chaotic genetic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol (Berl) 70:157–164. doi: 10.1007/BF00397680 CrossRefGoogle Scholar
  36. Johnson MS, Black R (1984) Pattern beneath the chaos: the effect of recruitment on genetic patchiness in an intertidal limpet. Evol Int J Org Evol 38:1371–1383. doi: 10.2307/2408642 CrossRefGoogle Scholar
  37. Johnson MS, Holborn K, Black R (1993) Fine-scale patchiness and genetic heterogeneity of recruits of the corralivorous gastropod Drupella cornus. Mar Biol (Berl) 117:91–96. doi: 10.1007/BF00346429 CrossRefGoogle Scholar
  38. Johnson MS, Wernham J (1999) Temporal variation of recruits as a basis of ephemeral genetic heterogeneity in the western rock lobster Panulirus cygnus. Mar Biol (Berl) 135:133–139. doi: 10.1007/s002270050610 CrossRefGoogle Scholar
  39. Jolly MT, Viard F, Weinmayr G, Gentil F, Thiebaut E, Jollivet D (2003) Does the genetic structure of Pectinaria koreni (Polychaeta : Pectinariidae) conform to a source-sink metapopulation model at the scale of the Baie de Seine? Helgol Mar Res 56:238–246Google Scholar
  40. Juinio-Menez MA, Magsino RM, Ravago-Gotanco R, Yu ET (2003) Genetic structure of Linckia laevigata and Tridacna crocea populations in the Palawan shelf and shoal reefs. Mar Biol (Berl) 142:717–726CrossRefGoogle Scholar
  41. Li G, Hedgecock D (1998) Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can J Fish Aquat Sci 55:1025–1033. doi: 10.1139/cjfas-55-4-1025 CrossRefGoogle Scholar
  42. McPherson AA, Stephenson RL, Taggart CT (2003) Genetically different Atlantic herring Clupea harengus spawning waves. Mar Ecol Prog Ser 247:303–309. doi: 10.3354/meps247303 CrossRefGoogle Scholar
  43. McShane PE, Smith MG (1991) Recruitment variation in sympatric populations of Haliotis rubra (Mollusca:Gastropoda) in southeast Australian waters. Mar Ecol Prog Ser 73:203–210. doi: 10.3354/meps073203 CrossRefGoogle Scholar
  44. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  45. Palumbi SR (1995) Nucleic acids II: the polymerase chain reaction. In: Hillis D, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, pp 205–247Google Scholar
  46. Paulay G (1990) Effects of late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands. Paleobiology 16:401–434CrossRefGoogle Scholar
  47. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size. Department of Primary Industries and Fisheries, Queensland GovernmentGoogle Scholar
  48. Planes S, Fauvelot C (2002) Isolation by distance and vicariance drive genetic structure of a coral reef fish in the Pacific Ocean. Evol Int J Org Evol 56:378–399CrossRefGoogle Scholar
  49. Planes S, Galzin R, Bonhomme F (1996) A genetic metapopulation model for reef fishes in oceanic islands: the case of the surgeonfish, Acanthurus triostegus. J Evol Biol 9:103–117. doi: 10.1046/j.1420-9101.1996.9010103.x CrossRefGoogle Scholar
  50. Planes S, Lecaillon G, Lenfant P, Meekan M (2002) Genetic and demographic variation in new recruits of Naso unicornis. J Fish Biol 61:1033–1049. doi: 10.1111/j.1095-8649.2002.tb01861.x CrossRefGoogle Scholar
  51. Poulin E, Féral J-P (1996) Consequences of brood protection on the diversity of antarctic echinoids. Evol Int J Org Evol 50:820–830. doi: 10.2307/2410854 CrossRefGoogle Scholar
  52. Roughgarden J, Gaines S, Possingham H (1988) Recruitment dynamics in complex life cycles. Science 241:1460–1466. doi: 10.1126/science.11538249 CrossRefGoogle Scholar
  53. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, 2nd edn. Cold Spring Harbor laboratory, Cold Spring HarborGoogle Scholar
  54. Selkoe KA, Gaines SD, Caselle JE, Warner RR (2006) Current shifts and kin aggregation explain genetic patchiness in fish recruits. Ecology 87:3082–3094. doi: 10.1890/0012-9658(2006)87[3082:CSAKAE]2.0.CO;2 CrossRefGoogle Scholar
  55. Tatarenkov A, Johannesson K (1994) Habitat related allozyme variation on a microgeographic-scale in the marine snail Littorina mariae (Prosobranchia, Littorinacea). Bot J Linn Soc 53:105–125. doi: 10.1006/bijl.1994.1063 CrossRefGoogle Scholar
  56. Vermeij G (1987) The dispersal barrier in the tropical Pacific: implications for molluscan speciation and extinction. Evol Int J Org Evol 41:1046–1058. doi: 10.2307/2409190 CrossRefGoogle Scholar
  57. Virgilio M, Abbiati M (2006) Temporal changes in the genetic structure of intertidal populations of Hediste diversicolor (Polychaeta : Nereididae). J Sea Res 56:53–58. doi: 10.1016/j.seares.2006.03.008 CrossRefGoogle Scholar
  58. Virgilio M, Backeljau T, Abbiati M (2006) Mitochondrial DNA and allozyme patterns of Hediste diversicolor (Polychaeta:Nereididae): the importance of small scale genetic structuring. Mar Ecol Prog Ser 326:157–165. doi: 10.3354/meps326157 CrossRefGoogle Scholar
  59. Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391PubMedPubMedCentralGoogle Scholar
  60. Watts RJ, Johnson MS, Black R (1990) Effects of recruitment on genetic patchiness in the urchin Echinometra mathaei in Western Australia. Mar Biol (Berl) 105:145–151. doi: 10.1007/BF01344280 CrossRefGoogle Scholar
  61. Weir BS (1979) Inferences about linkage disequilibrium. Biometrics 35:235–254. doi: 10.2307/2529947 CrossRefGoogle Scholar
  62. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evol Int J Org Evol 38(6):1358–1370. doi: 10.2307/2408641 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sophie Arnaud-Haond
    • 1
    • 4
    Email author
  • V. Vonau
    • 1
  • C. Rouxel
    • 1
  • F. Bonhomme
    • 3
  • Jean Prou
    • 1
  • E. Goyard
    • 1
  • P. Boudry
    • 2
  1. 1.Laboratoire d’Aquaculture tropicale, IFREMER/COPIFREMERTaravao, Tahiti, French PolynesiaFrance
  2. 2.Laboratoire de Génétique et PathologieIFREMERLa TrembladeFrance
  3. 3.Département de Biologie Intégrative, Institut des Sciences de L’Evolution de Montpellier (ISEM) UMR 5554Station Méditerranéenne de l’Environnement LittoralSèteFrance
  4. 4.Laboratoire Environnement Profond, Centre de BrestIFREMERPlouzanéFrance

Personalised recommendations