Advertisement

Marine Biology

, Volume 155, Issue 1, pp 51–62 | Cite as

Species-specific defense strategies of vegetative versus reproductive blades of the Pacific kelps Lessonia nigrescens and Macrocystis integrifolia

  • Christian Pansch
  • Ivan Gómez
  • Eva Rothäusler
  • Karina Veliz
  • Martin Thiel
Original Paper

Abstract

Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae.

Keywords

Vegetative Tissue Reproductive Tissue Feeding Assay Algal Tissue Kelp Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We are thankful to the leaders of the GAME project Mark Lenz and Martin Wahl. Fadia Tala made many helpful suggestions on a first draft of the manuscript. We would also like to thank Prof. Dr. Ulf Karsten and coworkers for the use of the laboratory at the University of Rostock, Germany. This project was financed by the Mercator Stiftung GmbH, and FONDECYT grants 1060127 (MT, IG) and 1060503 (IG).

References

  1. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91. doi: 10.1016/S0065-2296(05) 43001-3 Google Scholar
  2. Arnold TM, Targett NM (2003) To grow and defend: lack of tradeoffs for brown algal phlorotannins. Oikos 100:406–408. doi: 10.1034/j.1600-0706.2003.11680.x CrossRefGoogle Scholar
  3. Brawley SH, Johnson LE (1992) Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. Br Phycol J 27:233–252. doi: 10.1080/00071619200650241 CrossRefGoogle Scholar
  4. Brawley SH, Johnson LE, Pearson GA (1999) Gamete release at low tide in fucoid algae: maladaptive or advantageous? Am Zool 39:218–229CrossRefGoogle Scholar
  5. Buschmann A, Santelices B (1987) Micrograzers and spore release in Iridaea laminarioides Bory (Rhodophyta: Gigartinales). J Exp Mar Biol Ecol 108:171–179. doi: 10.1016/S0022-0981(87) 80021-7 CrossRefGoogle Scholar
  6. Carpenter RC (1986) Partitioning herbivory and its effects on coral reef algal communities. Ecol Monogr 56:345–363. doi: 10.2307/1942551 CrossRefGoogle Scholar
  7. Cronin G (2001) Resource allocation in seaweed and marine invertebrates: chemical defense patterns in relation to defense theories. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 325–353CrossRefGoogle Scholar
  8. Cronin G, Hay ME (1996) Within-plant variation in seaweed palatability and chemical defenses: optimal defense theory versus the growth-differentiation balance hypothesis. Oecologia 105:361–368. doi: 10.1007/BF00328739 CrossRefGoogle Scholar
  9. Cruz-Rivera E, Hay ME (2000) Can quantity replace quality? Food choice, compensatory feeding, and fitness of marine mesograzers. Ecology 81:201–219CrossRefGoogle Scholar
  10. Cruz-Rivera E, Hay ME (2003) Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol Monogr 73:483–506. doi: 10.1890/0012-9615(2003) 073[0483:PNQIWC]2.0.CO;2 CrossRefGoogle Scholar
  11. Duffy JE, Hay ME (1990) Seaweed adaptation to herbivory. Bioscience 40:368–375. doi: 10.2307/1311214 CrossRefGoogle Scholar
  12. Duffy JE, Paul VJ (1992) Prey nutritional quality and effectiveness of chemical defenses against tropical reef fishes. Oecologia 90:333–339. doi: 10.1007/BF00317689 CrossRefGoogle Scholar
  13. Edding M, Fonck E, Macchiavello J (1994) Lessonia. In: Akatsuka I (ed) Biology of economic algae. Academic Publishing, The Hague Netherlands, pp 407–446Google Scholar
  14. Edgar GJ (ed) (2000) Australian marine life: the plants and animals of temperate waters. Reed New Holland, SydneyGoogle Scholar
  15. Fagerström T (1989) Anti-herbivore chemical defense in plants: a note on the concept of cost. Am Nat 133:281–287. doi: 10.1086/284918 CrossRefGoogle Scholar
  16. Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005a) Within-thallus variation in chemical and physical defenses in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. J Exp Mar Biol Ecol 322:1–12. doi: 10.1016/j.jembe.2005.01.010 CrossRefGoogle Scholar
  17. Fairhead VA, Amsler CD, McClintock JB, Baker BJ (2005b) Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 28:680–686. doi: 10.1007/s00300-005-0735-4 CrossRefGoogle Scholar
  18. Gómez I, Orostegui M, Huovinen P (2007) Morpho-functional patterns of photosynthesis in the south Pacific kelp Lessonia nigrescens: Effects of UV radiation on 14C fixation and primary photochemical reactions. J Phycol 43:55–64. doi: 10.1111/j.1529-8817.2006.00301.x CrossRefGoogle Scholar
  19. Harper MK, Bubni TS, Copp BR, James RD, Lindsay BS, Richardson AD et al (2001) Introduction to the chemical ecology of marine natural products. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 3–69Google Scholar
  20. Hay ME, Fenical W (1988) Marine plant–herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145. doi: 10.1146/annurev.es.19.110188.000551 CrossRefGoogle Scholar
  21. Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:285–335. doi: 10.1086/417659 CrossRefGoogle Scholar
  22. Hoffmann A, Santelices B (eds) (1997) Flora marina de Chile central: marine flora at central Chile. Universidad Católica de Chile, SantiagoGoogle Scholar
  23. Honkanen T, Jormalainen V, Hemmi A, Mäkinen A, Heikkilä N (2002) Feeding and growth of the isopod Idotea baltica on the brown alga Fucus vesiculosus: roles of inter-population and within-plant variation in plant quality. Ecoscience 9:332–338CrossRefGoogle Scholar
  24. Jormalainen V, Honkanen T (2008) Macroalgal chemical defenses and their roles in structuring temperate marine communities. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg, pp 57–89CrossRefGoogle Scholar
  25. Jormalainen V, Honkanen T, Koivikko R, Eränen J (2003) Induction of phlorotannin production in a brown alga: defense or resource dynamics? Oikos 103:640–650. doi: 10.1034/j.1600-0706.2003.12635.x CrossRefGoogle Scholar
  26. Jormalainen V, Honkanen T, Vesakoski O, Koivikko R (2005) Polar extracts of the brown alga Fucus vesiculosus (L.) reduce assimilation efficiency but do not deter the herbivorous isopod Idotea baltica (Pallas). J Exp Mar Biol Ecol 317:143–157. doi: 10.1016/j.jembe.2004.11.021 CrossRefGoogle Scholar
  27. Koivikko R, Loponen J, Honkanen T, Jormalainen V (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–212. doi: 10.1007/s10886-005-0984-2 CrossRefGoogle Scholar
  28. Littler MM, Littler DS (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am Nat 116:25–44. doi: 10.1086/283610 CrossRefGoogle Scholar
  29. Lubchenco J, Gaines SD (1981) A unified approach to marine plant-herbivore interactions. I. Populations and communities. Annu Rev Ecol Syst 12:405–437. doi: 10.1146/annurev.es.12.110181.002201 CrossRefGoogle Scholar
  30. Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory—the first microscopic study. Planta 218:928–937. doi: 10.1007/s00425-003-1176-3 CrossRefGoogle Scholar
  31. Macaya EC, Thiel M (2008) In situ tests on inducible defenses in Dictyota kunthii and Macrocystis integrifolia (Phaeophyceae) from the Chilean coast. J Exp Mar Biol Ecol 354:28–38. doi: 10.1016/j.jembe.2007.10.005 CrossRefGoogle Scholar
  32. Macaya EC, Rothäusler E, Thiel M, Molis M, Wahl M (2005) Induction of defenses and within-alga variation of palatability in two brown algae from the northern-central coast of Chile: effects of mesograzers and UV radiation. J Exp Mar Biol Ecol 325:214–227. doi: 10.1016/j.jembe.2005.05.004 CrossRefGoogle Scholar
  33. Martinez EA (1996) Micropopulation differentiation in phenol content and susceptibility to herbivory in the Chilean kelp Lessonia nigrescens (Phaeophyta, Laminariales). Hydrobiologia 326/327:205–211. doi: 10.1007/BF00047808 CrossRefGoogle Scholar
  34. Maschek JA, Baker BJ (2008) The chemistry of algal secondary metabolism. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg, pp 1–24Google Scholar
  35. Mattson WJ (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161. doi: 10.1146/annurev.es.11.110180.001003 CrossRefGoogle Scholar
  36. Medeiros HE, da Gama BAP, Gallerani G (2007) Antifouling activity of seaweed extracts from Guarujá, Sao Paulo, Brazil. Braz J Oceanogr 55:257–264. doi: 10.1590/S1679-87592007000400003 CrossRefGoogle Scholar
  37. Neushul M (1963) Studies on the giant kelp, Macrocystis. II. Reproduction. Am J Bot 50:354–359. doi: 10.2307/2440152 CrossRefGoogle Scholar
  38. Paul VJ, Fenical W (1986) Chemical defense in tropical green algae, order Caulerpales. Mar Ecol Prog Ser 34:157–169. doi: 10.3354/meps034157 CrossRefGoogle Scholar
  39. Pavia H, Toth GB (2008) Macroalgal models in testing and extending defense theories. In: Amsler CD (ed) Algal chemical ecology. Springer, Heidelberg, pp 147–172CrossRefGoogle Scholar
  40. Pavia H, Cervin G, Lindgren A, Aberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 157:139–146. doi: 10.3354/meps157139 CrossRefGoogle Scholar
  41. Pavia H, Toth GB, Aberg P (2002) Optimal defense theory: elasticity analysis as a tool to predict intraplant variation in defenses. Ecology 83:891–897CrossRefGoogle Scholar
  42. Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217. doi: 10.3354/meps138209 CrossRefGoogle Scholar
  43. Pérez-Schultheiss J, Crespo JE (2008) A new species of Parhyalella Kunkel, 1910 (Amphipoda, Talitroidea, Dogielinotidae) from the coast of Chile. Zootaxa 1724:61–68Google Scholar
  44. Peterson CH, Renaud PE (1989) Analysis of feeding preference experiments. Oecologia 80:82–86. doi: 10.1007/BF00789935 CrossRefGoogle Scholar
  45. Porter KG (1976) Enhancement of algal growth and productivity by grazing zooplankton. Science 192:1332–1334. doi: 10.1126/science.192.4246.1332 CrossRefGoogle Scholar
  46. Raven JA (2003) Long-distance transport in non-vascular plants. Plant Cell Environ 26:73–85. doi: 10.1046/j.1365-3040.2003.00920.x CrossRefGoogle Scholar
  47. Reed D, Ebeling A, Anderson T, Anghera M (1996) Differential reproductive responses to fluctuating resources in two seaweeds with different reproductive strategies. Ecology 77:300–316. doi: 10.2307/2265679 CrossRefGoogle Scholar
  48. Rothäusler E, Thiel M (2006) Effect of detachment on the palatability of two kelp species. J Appl Phycol 18:423–435. doi: 10.1007/s10811-006-9053-7 CrossRefGoogle Scholar
  49. Rothäusler E, Macaya EC, Molis M, Wahl M, Thiel M (2005) Laboratory experiments examining inducible defense show variable responses of temperate brown and red macroalgae. Rev Chil Hist Nat 78:603–614CrossRefGoogle Scholar
  50. Santelices B, Ugarte R (1987) Algal life-history strategies and resistance to digestion. Mar Ecol Prog Ser 35:267–275. doi: 10.3354/meps035267 CrossRefGoogle Scholar
  51. Santelices B, Castilla JC, Cancino J, Schmiede P (1980) Comparative ecology of Lessonia nigrescens and Durvillaea antarctica (Phaeophyta) in Central Chile. Mar Biol (Berl) 59:119–132. doi: 10.1007/BF00405461 CrossRefGoogle Scholar
  52. Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139CrossRefGoogle Scholar
  53. Schoenwaelder MEA, Clayton MN (1999) The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia 38:161–166CrossRefGoogle Scholar
  54. Shibata T, Kawaguchi S, Hama Y, Inagaki M, Yamaguchi K, Nakamura T (2004) Local and chemical distribution of phlorotannins in brown algae. J Appl Phycol 16:291–296. doi: 10.1023/B:JAPH.0000047781.24993.0a CrossRefGoogle Scholar
  55. Steinberg PD (1984) Algal chemical defense against herbivores: allocation of phenolic compounds in the kelp Alaria marginata. Science 223:405–407. doi: 10.1126/science.223.4634.405 CrossRefGoogle Scholar
  56. Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 53:333–349. doi: 10.2307/1942581 CrossRefGoogle Scholar
  57. Steinberg PD, Van Altena IA (1992) Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia. Ecol Monogr 62:189–222. doi: 10.2307/2937093 CrossRefGoogle Scholar
  58. Stekoll MS, Else PV (1990) Cultivation of Macrocystis integrifolia (Laminariales, Phaeophyta) in southeastern Alaskan waters. Hydrobiologia 204/205:445–451. doi: 10.1007/BF00040269 CrossRefGoogle Scholar
  59. Steneck RS, Watling LE (1982) Feeding capabilities and limitations of herbivorous molluscs: a functional group approach. Mar Biol (Berl) 68:299–319. doi: 10.1007/BF00409596 CrossRefGoogle Scholar
  60. Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J Phycol 34:195–205. doi: 10.1046/j.1529-8817.1998.340195.x CrossRefGoogle Scholar
  61. Targett NM, Arnold TM (2001) Effects of secondary metabolites on digestion in marine herbivores. In: McClintock JB, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, pp 391–411CrossRefGoogle Scholar
  62. Taylor RB, Sotka E, Hay ME (2002) Tissue-specific induction of herbivore resistance: seaweed response to amphipod grazing. Oecologia 132:68–76. doi: 10.1007/s00442-002-0944-2 CrossRefGoogle Scholar
  63. Toth GB, Pavia H (2002a) Intraplant habitat and feeding preference of two gastropod herbivores inhabiting the kelp Laminaria hyperborea. J Mar Biol Assoc UK 82:1–5. doi: 10.1017/S0025315402005416 CrossRefGoogle Scholar
  64. Toth GB, Pavia H (2002b) Lack of phlorotannin induction in the kelp Laminaria hyperborea in response to grazing by two gastropod herbivores. Mar Biol (Berl) 140:403–409. doi: 10.1007/s002270100707 CrossRefGoogle Scholar
  65. Toth GB, Pavia H (2007) Induced herbivore resistance in seaweeds: a meta-analysis. J Ecol 95:425–434. doi: 10.1111/j.1365-2745.2007.01224.x CrossRefGoogle Scholar
  66. Toth GB, Langhamer O, Pavia H (2005) Inducible and constitutive defences of valuable seaweed tissues: consequences for herbivore fitness. Ecology 86:612–618. doi: 10.1890/04-0484 CrossRefGoogle Scholar
  67. Tugwell S, Branch GM (1989) Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defense theory. J Exp Mar Biol Ecol 129:219–230. doi: 10.1016/0022-0981(89) 90104-4 CrossRefGoogle Scholar
  68. Tuomi J, Ilvessalo H, Niemelä P, Sirén S, Jormalainen V (1989) Within-plant variation in phenolic content and toughness of the brown alga Fucus vesiculosus L. Bot Mar 32:505–509CrossRefGoogle Scholar
  69. Van Alstyne KL (1995) Comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 21:45–58. doi: 10.1007/BF02033661 CrossRefGoogle Scholar
  70. Van Alstyne KL, Houser LT (2003) Dimethylsulfide release during macroinvertebrate grazing and its role as an activated chemical defense. Mar Ecol Prog Ser 250:175–181. doi: 10.3354/meps250175 CrossRefGoogle Scholar
  71. Van Alstyne KL, McCarthy JJ, Hustead CL, Kearns LJ (1999) Phlorotannin allocation among tissues of northeastern pacific kelps and rockweeds. J Phycol 35:483–492. doi: 10.1046/j.1529-8817.1999.3530483.x CrossRefGoogle Scholar
  72. Van Alstyne KL, Wolfe GV, Freidenburg TL, Neill A, Hicken C (2001) Activated defense systems in marine macroalgae: evidence for an ecological role for DMSP cleavage. Mar Ecol Prog Ser 213:53–65. doi: 10.3354/meps213053 CrossRefGoogle Scholar
  73. Vinueza LR, Branch GM, Branch LM, Bustamente RH (2006) Top-down herbivory and bottom-up El Nino effects on Galapagos rocky-shore communities. Ecol Monogr 76:111–131. doi: 10.1890/04-1957 CrossRefGoogle Scholar
  74. Winter FC, Estes JA (1992) Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum (Phaeophyta; Laminariales) on feeding rate and growth in the red abalone (Haliotus rufescens). J Exp Mar Biol Ecol 155:263–277. doi: 10.1016/0022-0981(92) 90067-K CrossRefGoogle Scholar
  75. Wotton RS (2004) The ubiquity and many roles of exopolymers (EPS) in aquatic systems. Sci Mar 68:13–21CrossRefGoogle Scholar
  76. Yates JL, Peckol P (1993) Effects of nutrient availability and herbivory on polyphenolics in the seaweed Fucus vesiculosus. Ecology 74:1757–1766. doi: 10.2307/1939934 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christian Pansch
    • 1
  • Ivan Gómez
    • 2
  • Eva Rothäusler
    • 1
  • Karina Veliz
    • 2
  • Martin Thiel
    • 3
    • 4
  1. 1.Institut für Biowissenschaften, Lehrstuhl für MeeresbiologieUniversität RostockRostockGermany
  2. 2.Instituto de Biología Marina, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  3. 3.Departamento de Biología Marina, Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
  4. 4.Centro de Estudios Avancados en Zonas Aridas CEAZACoquimboChile

Personalised recommendations