Marine Biology

, Volume 155, Issue 2, pp 243–247 | Cite as

Molecular dating and biogeography of the neritic krill Nyctiphanes

  • M. Eugenia D’AmatoEmail author
  • Gordon W. Harkins
  • Tulio de Oliveira
  • Peter R. Teske
  • Mark J. Gibbons
Short Communication


The genus Nyctiphanes (Malacostraca, Euphausiacea) comprises four neritic species that display antitropical geographic distribution in the Pacific (N. simplex and N. australis) and Atlantic (N. couchii and N. capensis) Oceans. We studied the origin of this distribution applying methods for phylogenetic reconstruction and molecular dating of nodes using a Bayesian MCMC analysis and the DNA sequence information contained in mtDNA 16S rDNA and cytochrome oxidase (COI). We tested hypotheses of vicariance by contrasting the time estimates of cladogenesis with the onset of the major barriers to ocean circulation. It was estimated that Nyctiphanes originated in the Pacific Ocean during the Miocene, with a lower limit of 18 miilion years ago (Mya). An Atlantic–Pacific cladogenic event (95% HPD 3.2–9.6) took place after the closure of the Tethyan Sea, suggesting that dispersal occurred from the Indo-Pacific, most likely via southern Africa. Similarly, the antitropical distribution pattern observed in the eastern Atlantic Ocean likely resulted from recent Pliocene–Pleistocene (95% HPD 1.0–4.97) northward dispersal from the southern hemisphere. Our results imply that dispersal appears to have had a significant role to play in the evolution of this group.


Markov Chain Monte Carlo Method Divergence Time Estimate Vicariant Event Molecular Clock Model High Posterior Density Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank G. Tarling, S.N. Jarman and J. Gomez for supplying us with specimens of Nyctiphanes couchii, N. australis and N. simplex. Financial support for MED was provided by the National Research Foundation—Royal Society SET Program. Gordon W. Harkins is funded by the Atlantic Philanthropies and NRF Grant 62302. The Bioinformatics Capacity Development Research Unit from the South African Medical Research Council funds Tulio de Oliveira. Peter Teske was supported by a postdoctoral research fellowship from the NRF and an overseas study grant from the Ernest Oppenheimer Memorial Trust. Sampling and laboratory procedures comply with the current laws of the country.

Supplementary material

227_2008_1005_MOESM1_ESM.doc (126 kb)


  1. Bowen BW, Grant WS (1997) Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution 51:1601–1610. doi: 10.2307/2411212 CrossRefGoogle Scholar
  2. Burridge CP, White RW (2000) Molecular phylogeny of the antitropical subgenus Goniistius (Perciformes: Cheilodactylidae: Cheylodactylus): evidence for multiple transequatorial divergences and non- monophyly. Biol J Linn Soc 70:435–458Google Scholar
  3. Casanova B (1984) Phylogenie des Euphausiacea (Crustaces Eucarides). Bulletin du Museum National d’ Histoire Naturelle, Paris 6(4):1077–1089Google Scholar
  4. Connolly SR, Bellwood DR, Hughes TP (2003) Indo-Pacific biodiversity of coral reefs: deviations from a mid-domain model. Ecology 84:2178–2190. doi: 10.1890/02-0254 CrossRefGoogle Scholar
  5. Dawson EY (1946) New unreported algae from Southern California and northwestern Mexico. Bull South Calif Acad Sci 44:57–71Google Scholar
  6. Drummond AJ, Rambaut A (2006) BEAST v1.4.6, available from
  7. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4(5):e88. doi: 10.1371/journal.pbio.0040088 CrossRefGoogle Scholar
  8. Dupont LM, Donner B, Vidal L, Pérez EM, Wefer G (2005) Linking desert evolution and coastal upwelling: Pliocene climate change in Namibia. Geology 33:461–464. doi: 10.1130/G21401.1 CrossRefGoogle Scholar
  9. Emerson WK (1952) The influence of upwelling on the distribution of marine floras and faunas of the west coast of Baja California, Mexico. The American Malacological Union. Annu Rep 1952:32–33Google Scholar
  10. Felsenstein J (1981) Related articles, links evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. doi: 10.1007/BF01734359 CrossRefGoogle Scholar
  11. Gibbons MJ (1995) Observations on euphausiid assemblages of the south coast of South Africa. S Afr J Mar Sci 16:141–148CrossRefGoogle Scholar
  12. Gibbons MJ (1997) Pelagic biogeography of the South Atlantic. Mar Biol (Berl) 129:757–768. doi: 10.1007/s002270050218 CrossRefGoogle Scholar
  13. Gibbons MJ, Barange M, Hutchings L (1995) Zoogeography and diversity of euphausiids around southern Africa. Mar Biol (Berl) 123:257–268. doi: 10.1007/BF00353617 CrossRefGoogle Scholar
  14. Grant SW, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J Hered 89:415–426. doi: 10.1093/jhered/89.5.415 CrossRefGoogle Scholar
  15. Grant SW, Leslie RW (2001) Inter-ocean dispersal is an important mechanism in the zoogeography of hakes (pisces: Merluccius spp.). J Biogeogr 27:699–721. doi: 10.1046/j.1365-2699.2001.00585.x CrossRefGoogle Scholar
  16. Haq BU (1982) Marine geology and oceanography of Arabian Sea and Coastal Pakistan. In: Haq BU, Milliman JD (eds) Paleoceanography: a synoptic overview of 200 million years of ocean history. Van Nostrand Reinhold, NY, pp 201–231Google Scholar
  17. Hilbish TJ, Mullinax A, Dolven SI, Meyer A, Koehn RK, Rawson PD (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of trans-equatorial migration. Mar Biol (Berl) 136:69–77. doi: 10.1007/s002270050010 CrossRefGoogle Scholar
  18. Keigwin LD (1978) Pliocene closing of the Isthmus of Panama based on biostratigraphic evidence from nearby Pacific and Caribbean Sea cores. Geology 6:630–634. doi:10.1130/0091-7613(1978)6<630:PCOTIO>2.0.CO;2CrossRefGoogle Scholar
  19. Koufopanou V, Reid DG, Ridgway SA, Thomas RH (1999) A molecular phylogeny of the patellid limpets (Gastropoda, Patinellidae) and its implications for the origins of their antitropical distributions. Mol Phylogenet Evol 11:138–156. doi: 10.1006/mpev.1998.0557 CrossRefGoogle Scholar
  20. Lindberg DR (1991) Marine biotic interchange between Northern and Southern hemispheres. Paleobiology 17:308–324CrossRefGoogle Scholar
  21. Maas A, Waloszek D (2001) Larval development of Euphausia superba Dana, 1852 and a phylogentic analysis of the Euphausicea. Hydrobiologia 448:143–169. doi: 10.1023/A:1017549321961 CrossRefGoogle Scholar
  22. Pillar SC, Stuart V, Barange M, Gibbons MJ (1992) Community structure and trophic ecology of Euphausiids in the Benguela ecosystem. S Afr J Mar Sci 12:393–409CrossRefGoogle Scholar
  23. Rabassa R, Coronato AM, Salemme M (2005) Chronology of the Late Cenozoic Patagonian glaciationsand their correlation with biostratigraphic units of the Pampean region (Argentina). J S Am Earth Sci 20:81–103. doi: 10.1016/j.jsames.2005.07.004 CrossRefGoogle Scholar
  24. Rambaut A, Drummond A (2004) TRACER. Version 1.4: MCMC Trace Analysis Tool. University of Oxford. Available at
  25. Rögl F, Steininger FF (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys. Ann Naturlist Mus Wien 85A:135–163Google Scholar
  26. Schubart CD, Diesel R, Blair Hedges S (1998) Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365. doi: 10.1038/30724 CrossRefGoogle Scholar
  27. Siesser WG (1980) Late Miocene origin of the Benguela upwelling system off northern Namibia. Science 208:283–285. doi: 10.1126/science.208.4441.283 CrossRefGoogle Scholar
  28. van der Spoel S, Pierrot-Bults AC, Schalk PH (1990) Probable mesozoic vicariance in the biogeography of Euphausiacea. Bijdragen tot de Dierkunde 60:155–162Google Scholar
  29. Stepien CA, Rossenblatt RH (1996) Genetic divergence in antitropical pelagic marine fishes (Trachurus, Merluccius, Scomber) between North and South America. Copeia 1996:586–598. doi: 10.2307/1447522 CrossRefGoogle Scholar
  30. Stillman JH, Reeb CA (2001) Molecular Phylogeny of Eastern Porcelain ctabs, genera Petrolisthes and Pachycheles, based on the mtDNA 16S rRNA sequence: phylogeogtaphic and systematic implications. Mol Phylogenet Evol 19:236–245. doi: 10.1006/mpev.2001.0924 CrossRefGoogle Scholar
  31. Teske PR, Hamilton H, Matthee CA, Barker NP (2007) Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage. BMC Evol Biol 7:138. doi: 10.1186/1471-2148-7-138 CrossRefGoogle Scholar
  32. Valentine JW (1955) Upwelling and thermally anomalous Pacific coast Pleistocene molluscan faunas. Am J Sci 253:462–474CrossRefGoogle Scholar
  33. White BN (1994) Vicariance biogeography of the open-ocean Pacific. Prog Oceanogr 34:257–284. doi: 10.1016/0079-6611(94)90012-4 CrossRefGoogle Scholar
  34. Yule GU (1924) A mathematical theory of evolution, based on conclusion of Dr J.C. Willis. Philos Trans Roy Soc London Ser B 213:21–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Eugenia D’Amato
    • 1
    • 4
    Email author
  • Gordon W. Harkins
    • 2
  • Tulio de Oliveira
    • 2
  • Peter R. Teske
    • 3
  • Mark J. Gibbons
    • 1
  1. 1.Biodiversity and Conservation Biology DepartmentUniversity of the Western CapeBellvilleSouth Africa
  2. 2.South African National Bioinformatics InstituteUniversity of the Western CapeBellvilleSouth Africa
  3. 3.Molecular Ecology Laboratory, Department of Biological SciencesMacquarie UniversitySydneyAustralia
  4. 4.Biotechnology DepartmentUniversity of the Western CapeBellvilleSouth Africa

Personalised recommendations