Advertisement

Marine Biology

, Volume 155, Issue 1, pp 37–49 | Cite as

Seasonal variation in the white muscle biochemical composition of deep-sea macrourids in the North-east Atlantic

  • K. M. Kemp
  • K. P. P. Fraser
  • M. A. Collins
  • I. G. Priede
Original Paper
  • 96 Downloads

Abstract

The foremost temporal signal to the deep benthos, where temperature and light conditions are relatively constant, is a seasonal pulse of organic carbon sinking from the photic layer. In the Porcupine Seabight region of the NE Atlantic this flux begins during late spring and early summer, although the timing and intensity of the peak varies annually. A rapid response to this nutrient input is most apparent amongst bacteria and benthic meiofauna which can directly utilize the carbon. The question remains as to whether the seasonal influx of carbon to the deep Atlantic may affect, and possibly entrain, aspects of the life cycles of generalist scavengers near the top of the trophic hierarchy, such as macrourid fish. Biochemical analyses of the white muscle of three macrourid species indicate a slight seasonal effect. White muscle protein content in Coryphaenoides rupestris is twofold higher in autumn than spring, RNA content and RNA to protein ratio increased in C. guentheri in autumn, and protein, RNA, and RNA to protein ratio all are higher during autumn than spring in shallow living C. armatus (2,500 m). Changes in RNA to protein ratio in the white muscle of C. armatus, relative to depth of capture, appear to reflect expected patterns in specific growth rate. Significantly higher RNA to protein ratios are apparent in shallow than deep living C. armatus in both seasons. There is no significant decline in white muscle protein content with depth of capture in these three taxonomically related species. Data were collected over several successive years and the possibility of interannual variability complicates the interpretation of seasonal patterns. Despite these limitations this study does indicate a slight seasonal difference in the growth rate of C. rupestris, C. guentheri and C. armatus in the deep Northeast Atlantic.

Keywords

Phytoplankton White Muscle Protein Ratio Intermediate Depth Stomach Fullness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank JC Drazen and two anonymous reviewers for critically reviewing this manuscript. This work was supported by NERC grant GR3/12789. We thank the ship companies and crew of RRS Discovery cruises 255, 260 and 266. Many thanks also to R Shreeve of the British Antarctic Survey for her assistance with this study.

References

  1. Aberle N, Witte U (2003) Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: in situ pulse-chase experiments using 13C-labelled phytodetritus. Mar Ecol Prog Ser 251:37–47. doi: 10.3354/meps251037 CrossRefGoogle Scholar
  2. Allain V (1999a) -cologie, biologie et exploitation des populations de poisons profonds de l’Atlantic du Nord-Est. Thesis, Univ. de Bretagne Occidentale, Brest, 376 pGoogle Scholar
  3. Allain V (2001) Reproductive strategies of three deep-water benthopelagic fishes from the northeast Atlantic Ocean. Fish Res 51:165–176. doi: 10.1016/S0165-7836(01)00243-0 CrossRefGoogle Scholar
  4. Allain V, Lorance P (2000) Age estimation and growth of some deep-sea fish from the Northeast Atlantic Ocean. Cybium 24(3):7–16Google Scholar
  5. Bailey DM, Jamieson AJ, Bagley PM, Collins MA, Priede IG (2002) Measurement of in situ oxygen consumption of deep-sea fish using an autonomous lander vehicle. Deep Sea Res Part I Oceanogr Res Pap 49:1519–1529. doi: 10.1016/S0967-0637(02)00036-5 CrossRefGoogle Scholar
  6. Bergstad OA (1990) Distribution, population structure, growth and reproduction of the roundnose grenadier Coryphaenoides rupestris (Pisces: Macrouridae) in the deep waters of the Skagerrak. Mar Biol (Berl) 107:25–39. doi: 10.1007/BF01313239 CrossRefGoogle Scholar
  7. Bergstad OA (1995) Age determination of deep-water fishes: experience, status and challenges from the future. In: Hopper AG (ed) Deep-water fisheries of the North Atlantic Oceanic slope. Kluwer, DordrechtGoogle Scholar
  8. Bergstad OA, Gordon JDM (1994) Deep-water ichthyoplankton of the Skagerrak with special reference to Coryphaenoides rupestris Gunnerus, 1765 (Pisces, Macrouridae) and Argentina silus (Ascanius, 1775) (Pisces, Argentinidae). Sarsia 79:33–43CrossRefGoogle Scholar
  9. Bergstad OA, Magnusson JV, Magnusson J, Hareide N-R, Reinert J (1998) Intercalibration of age readings of ling (Molva molva L.) blue ling (Molva dipterygia Pennant, 1784) and tusk (Brosme brosme L.). ICES J Mar Sci 55:309–318. doi: 10.1006/jmsc.1997.9995 CrossRefGoogle Scholar
  10. Black D, Love RM (1986) The sequential mobilisation and restoration of energy reserves in tissues of Atlantic cod during starvation and refeeding. J Comp Physiol B 156(4):469–479. doi: 10.1007/BF00691032 CrossRefGoogle Scholar
  11. Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10:30–36CrossRefGoogle Scholar
  12. Childress JJ, Nygaard M (1973) The chemical composition of midwater fishes as a function of depth of occurrence off Southern California. Deep-Sea Res 20:1093–1109Google Scholar
  13. Childress JJ, Nygaard M (1974) Chemical composition and buoyancy of midwater crustaceans as a function of depth of occurrence off Southern California. Mar Biol (Berl) 27(3):225–238. doi: 10.1007/BF00391948 CrossRefGoogle Scholar
  14. Childress JJ, Cowles DL, Favuzzi JA, Mickel TJ (1990) Metabolic rates of benthic deep sea decapod crustaceans decline with increasing depth primarily due to the decline in temperature. Deep Sea Res 37:929–949CrossRefGoogle Scholar
  15. Collins MA, Bailey DM, Ruxton GD, Priede IG (2005) Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc R Soc B Biol Sci 272:2051–2057CrossRefGoogle Scholar
  16. Drazen JC (2002) A seasonal analysis of the nutritional condition of deep-sea macrourid fishes in the north-east Pacific. J Fish Biol 60:1280–1295. doi: 10.1111/j.1095-8649.2002.tb01720.x CrossRefGoogle Scholar
  17. Drazen JC (2007) Depth related trends in proximate composition of demersal fishes in the eastern North Pacific. Deep Sea Res I 54:203–219CrossRefGoogle Scholar
  18. Faucconneau B, Breque J, Bielle C (1989) Influence of feeding on protein metabolism in Atlantic salmon (Salmo salar). Aquaculture 79:29–36. doi: 10.1016/0044-8486(89)90442-0 CrossRefGoogle Scholar
  19. Fraser KPP, Clarke A, Peck LS (2002a) Feast and famine in Antarctica: seasonal physiology in the limpet Nacella concinna. Mar Ecol Prog Ser 242:169–177. doi: 10.3354/meps242169 CrossRefGoogle Scholar
  20. Fraser KPP, Clarke A, Peck LS (2002b) Low-temperature protein metabolism: seasonal changes in protein synthesis and RNA dynamics in the Antarctic limpet Nacella concinna Strebel 1908. J Exp Biol 205:3077–3086PubMedPubMedCentralGoogle Scholar
  21. Fraser KPP, Rogers AD (2007) Protein metabolism in marine animals: the underlying mechanism of growth. Adv Mar Biol 52:267–362. doi: 10.1016/S0065-2881(06)52003-6 CrossRefGoogle Scholar
  22. Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70–73. doi: 10.1038/332070a0 CrossRefGoogle Scholar
  23. Gooday AJ, Turley CM (1990) Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philos Trans R Soc Lond A 331:119–138. doi: 10.1098/rsta.1990.0060 CrossRefGoogle Scholar
  24. Goolish EM, Adelman IR (1987) Tissue-specific cytochrome oxidase activity in largemouth bass: the metabolic costs of feeding and growth. Physiol Zool 60:454–464CrossRefGoogle Scholar
  25. Gordon JDM (1978) Some notes on the biology of the roundnose grenadier Coryphaenoides rupestris to the West of Scotland. International Council Exploration Sea Committee Meeting (Demersal Fish Committee), G:40, pp 1–12Google Scholar
  26. Gordon JDM (1979) Seasonal reproduction in deep-sea fish. In: Naylor E, Hartnoll RG (eds) Cyclic phenomena in marine plants and animals. Pergamon Press, Oxford, pp 223–229CrossRefGoogle Scholar
  27. Gordon JDM, Swan SC (1996) Validation of age readings from otoliths of juvenile roundnose grenadier, Coryphaenoides rupestris, a deep-water macrourid fish. J Fish Biol 49(Suppl A):217–238. doi: 10.1111/j.1095-8649.1996.tb06078.x CrossRefGoogle Scholar
  28. Gordon JDM, Swan SC, Kelly CJ, Hareide N-R (1995) Age determination of juvenile roundnose grenadier, Coryphaenoides rupestris, a deep-water macrourid fish: a preliminary report, International Council for the Exploration of the Sea, Demersal fish committee report (Ref. D, H) ICES CM 1995/G:6Google Scholar
  29. Guderley H, Dutil J-D, Pelletier D (1996) The physiological status of Atlantic cod, Gadus morhua, in the wild and the laboratory: estimates of growth rates under field conditions. Can J Fish Aquat Sci 53:550–557. doi: 10.1139/cjfas-53-3-550 CrossRefGoogle Scholar
  30. Haedrich RL, Henderson NR (1974) Pelagic food of Coryphaenoides rupestris. Deep Sea Res 21:739-744Google Scholar
  31. Haines TA (1973) An evaluation of RNA–DNA ratio as a measure of long-term growth in fish populations. J Fish Res Board Can 30:195–199CrossRefGoogle Scholar
  32. Houlihan DF, Carter CG, McCarthy ID (1995) Protein turnover in animals. In: Walsh PJ, Wright P (eds) Nitrogen metabolism and excretion. CRC Press, Boca Raton, pp 1–32Google Scholar
  33. Houlihan DF, Hall SJ, Gray C, Noble BS (1988) Growth rates and protein turnover in Atlantic cod, Gadus morhua. Can J Fish Aquat Sci 45:951–964CrossRefGoogle Scholar
  34. Houlihan DF, Hall SJ, Gray C (1989) Effects of ration on protein turnover in cod. Aquaculture 79:103–110. doi: 10.1016/0044-8486(89)90450-X CrossRefGoogle Scholar
  35. Houlihan DF (1991) Protein turnover in ectotherms and its relationship to energetics. In: Gilles R (ed) Advances in comparative and environmental physiology, vol 7. Springer, BerlinCrossRefGoogle Scholar
  36. Houlihan DF, Mathers EM, Foster A (1993) Biochemical correlates of growth rate in fish. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, London, pp 45–71CrossRefGoogle Scholar
  37. Johnston IA, Goldspink G (1973) Some effects of prolonged starvation on the metabolism of the red and white myotomal muscles of the plaice Pleuronectes platessa. Mar Biol (Berl) 19:348–353. doi: 10.1007/BF00348906 CrossRefGoogle Scholar
  38. Kelly CJ, Connolly PL, Bracken JJ (1996) Maturity, oocyte dynamics and fecundity of the roundnose grenadier from the Rockall trough. J Fish Biol 49:5–17. doi: 10.1111/j.1095-8649.1996.tb06064.x CrossRefGoogle Scholar
  39. Kelly CJ, Connolly PL, Bracken JJ (1997) Age estimation, growth, maturity and distribution of the roundnose grenadier from the Rockall trough. J Fish Biol 50(1):1–17. doi: 10.1111/j.1095-8649.1997.tb01336.x CrossRefGoogle Scholar
  40. Kiessling A, Hung SSO, Storebakken T (1993) Differences in protein mobilization between ventral and dorsal parts of white epaxial muscle from fed, fasted and refed white sturgeon (Acipenser transmontanus). J Fish Biol 43:401–408. doi: 10.1111/j.1095-8649.1993.tb00575.x CrossRefGoogle Scholar
  41. Lampitt RS (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep Sea Res 32(8):885–897. doi: 10.1016/0198-0149(85)90034-2 CrossRefGoogle Scholar
  42. Levin LA, Gooday AJ (2003) The deep atlantic ocean. In: Tyler PA (ed) Ecosystems of the World 28: ecosystems of the deep oceans. Elsevier, Amsterdam, p 569Google Scholar
  43. Longhurst A (1998) Ecological geography of the sea. Academic Press, San DiegoGoogle Scholar
  44. Loughna PT, Goldspink G (1984) The effects of starvation upon protein turnover in red and white myotomal muscle of rainbow trout, Salmo gairdneri Richardson. J Fish Biol 25:223–230. doi: 10.1111/j.1095-8649.1984.tb04869.x CrossRefGoogle Scholar
  45. Love M (1980) The chemical biology of fishes, vol 2: advances 1968–1977. Academic Press, London, p 943Google Scholar
  46. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin–phenol reagent. J Biol Chem 193:265–275Google Scholar
  47. Lowery MS, Somero GN (1990) Starvation effects on protein synthesis in red and white muscle of the barred sand bass, Paralabrax nebulifer. Physiol Zool 63:630–648CrossRefGoogle Scholar
  48. Lyndon AR, Houlihan DF, Hall SJ (1992) The effect of short term fasting and a single meal on protein synthesis and oxygen consumption in cod. J Comp Physiol 162B:209–215CrossRefGoogle Scholar
  49. Mathers EM, Houlihan DF, Cunningham MJ (1992a) Estimation of saithe Pollachius virens growth rates around the Beryl oil platforms in the North Sea: a comparison of methods. Mar Ecol Prog Ser 86:31–40. doi: 10.3354/meps086031 CrossRefGoogle Scholar
  50. Mathers EM, Houlihan DF, Cunningham MJ (1992b) Nucleic acid concentrations and enzyme activities as correlates of growth rate of the saithe Pollachius virens: growth-rate estimates of open-sea fish. Mar Biol (Berl) 112:363–369. doi: 10.1007/BF00356280 CrossRefGoogle Scholar
  51. McCarthy ID, Houlihan DH (1996) The effect of temperature on protein metabolism in fish: the possible consequences for wild Atlantic salmon (Salmo salar L.) stocks in Europe as a result of global warming. In: Wood CM, McDonald DO (eds) Society for experimental biology seminar series 61: global warming implications for freshwater and marine fish. Cambridge University Press, Cambridge, pp 51–77Google Scholar
  52. McCarthy I, Mokness E, Pavlov DA (1998) The effects of temperature on growth rate and growth efficiency of juvenile common wolffish. Aquac Int 6:207–218CrossRefGoogle Scholar
  53. Millward DJ, Garlick PJ, James WPT, Nnanyelugo DO, Ryatt JS (1973) Relationship between protein synthesis and RNA content in skeletal muscle. Nature 241:204–205. doi: 10.1038/241204a0 CrossRefGoogle Scholar
  54. Mauchline J, Gordon JDM (1984) Diets and bathymetric distributions of the macrourid fish of the Rockall Trough, northeastern Atlantic Ocean. Mar Biol (Berl) 81:107–121. doi: 10.1007/BF00393109 CrossRefGoogle Scholar
  55. McMillan DN, Houlihan DF (1988) The effect of refeeding on tissue protein synthesis in rainbow trout. Physiol Zool 61(5):429–441CrossRefGoogle Scholar
  56. Mejbaum W (1939) Über die bestimmung kleiner pentosemengen, insbesondere in derivaten der adenylsäure. Hoppe Seylers Z Physiol Chem 258:117–120CrossRefGoogle Scholar
  57. Merrett NR (1978) On the identity and pelagic occurrence of larval and juvenile stages of rattail fishes (Family Macrouridae) from 60 N, 20 W and 53 N, 20 W. Deep-Sea Res 25:147–160. doi: 10.1016/0146-6291(78)90002-4 CrossRefGoogle Scholar
  58. Merrett NR, Barnes SH (1996) Preliminary survey of egg envelope morphology in the Macrouridae and the possible implications of its ornamentation. J Fish Biol 48:101–119. doi: 10.1111/j.1095-8649.1996.tb01422.x CrossRefGoogle Scholar
  59. Merrett NR, Haedrich RL (1997) Deep-sea demersal fish and fisheries. Chapman and Hall, London, p 282Google Scholar
  60. Nybakken JW (2001) Marine biology, an ecological approach, 5th edn edn. Benjamin Cummings, San Francisco, p 516Google Scholar
  61. Pain VM, Clemens MJ (1980) Mechanism and regulation of protein biosynthesis in eukaryotic cells. In: Buttery PJ, Lindsey B (eds) Protein deposition in animals. Butterworths, LondonGoogle Scholar
  62. Parsons TR, Lalli CM (1988) Comparative oceanic ecology of the plankton communities of the subarctic Atlantic and Pacific oceans. Oceanogr Mar Biol Annu Rev 26:317–359Google Scholar
  63. Pearcy WG, Ambler JW (1974) Food habits of deep-sea macrourid fishes off the Oregon coast. Deep Sea Res 21:745–759Google Scholar
  64. Pocrnjic Z, Mathews RW, Rappaport S, Haschemeyer AEV (1983) Quantitative protein synthesis rates in various tissues of a temperate fish in vivo by the method of phanylalanine swamping. Comp Biochem Physiol 74B:735–738Google Scholar
  65. Polloni P, Haedrich R, Rowe G, Clifford CH (1979) The size–depth relationship in deep ocean animals. Int Rev Ges Hydrobiol 64:39–46CrossRefGoogle Scholar
  66. Priede IG, Bagley PM (2000) In situ studies on deep-sea demersal fishes using autonomous unmanned lander platforms. Oceanogr Mar Biol Annu Rev 38:357–392Google Scholar
  67. Priede IG, Bagley PM, Smith KL Jr (1994) Seasonal change in activity of abyssal demersal scavenging grenadiers Coryphaenoides (Nematonurus) armatus in the eastern North Pacific Ocean. Limnol Oceanogr 39:279–285CrossRefGoogle Scholar
  68. Rannou M (1975) Donn.es nouvelles sur l’activit. reproductrice cyclicque des poisons benthiques bathyaux et abyssaux. CR Acad Sci Par 281(D):1023–1025Google Scholar
  69. Rannou M, Thiriot-Quievreux C (1975) Structure des otolithes d’un Macrouridae (Poisson, Gadiforme) bathyal. -tude au microscope .lectronique a balayage. Ann Inst Oceanogr 51:195–201Google Scholar
  70. Rice AL, Billett DSM, Thurston MH, Lampitt RS (1991) The Institute of Oceanographic Sciences biology programme in the Porcupine Seabight: background and general introduction. J Mar Biol Assoc UK 71:281–310CrossRefGoogle Scholar
  71. Ruxton GD, Bailey DM (2005) Searching speeds and the energetic feasibility of an obligate whale-scavenging fish. Deep Sea Res Part I Oceanogr Res Pap 52:1536–1541. doi: 10.1016/j.dsr.2005.02.008 CrossRefGoogle Scholar
  72. Sedberry GR, Musick JA (1978) Feeding strategies of some demersal fishes of the continental slope and rise off the Mid-Atlantic Coast of the USA. Mar Biol 44(4):357–375CrossRefGoogle Scholar
  73. Siebenaller JF, Yancey PH (1984) Protein composition of white skeletal muscle from mesopelagic fishes having different water and protein contents. Mar Biol (Berl) 78(2):129–137. doi: 10.1007/BF00394692 CrossRefGoogle Scholar
  74. Smith K (1978) Metabolism of the abyssopelagic rattail Corphypahenoides armatus measured in situ. Nature 274:362–364. doi: 10.1038/274362a0 CrossRefGoogle Scholar
  75. Smith MAK (1981) Estimation of growth potential by measurement of tissue protein synthetic rates in feeding and fasting rainbow trout, Salmo gairdnerii Richardson. J Fish Biol 19(2):213. doi: 10.1111/j.1095-8649.1981.tb05825.x CrossRefGoogle Scholar
  76. Smith KL, Baldwin RJ (1984) Seasonal fluctuations in deep-sea sediment community oxygen consumption: central and eastern North Pacific. Nature 307:624–626CrossRefGoogle Scholar
  77. Stein DL, Pearcy WG (1982) Aspects of reproduction, early life history, and biology of macrourid fishes off Oregon, U.S.A. Deep-Sea Res 29(11A):1313–1329. doi: 10.1016/0198-0149(82)90011-5 CrossRefGoogle Scholar
  78. Storch D, Lannig G, Pörtner HO (2005) Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). J Exp Biol 208:2409–2420CrossRefGoogle Scholar
  79. Swan SC, Gordon JDM (2001) A review of age estimation in macrourid fishes with new data on age validation of juveniles. Fish Res 1199:1–19Google Scholar
  80. Tyler PA (1988) Seasonality in the deep sea. Oceanogr Mar Biol Annu Rev 26:227–258Google Scholar
  81. Witte U, Aberle N, Sand M, Wenzhöfer F (2003) Rapid response of a deep-sea benthic community to POM enrichment: an in situ experimental study. Mar Ecol Prog Ser 251:27–36. doi: 10.3354/meps251027 CrossRefGoogle Scholar
  82. Yang TH, Somero GN (1993) Effect of feeding and food deprivation on oxygen consumption, muscle protein concentration and activities of energy metabolism enzymes in muscle and brain of shallow-living (Scorpaena gutata) and deep-living (Sebastolobus alasconus) scorpaenid fishes. J Exp Biol 181:213–132Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • K. M. Kemp
    • 1
  • K. P. P. Fraser
    • 2
  • M. A. Collins
    • 2
  • I. G. Priede
    • 1
  1. 1.OceanlabUniversity of AberdeenNewburghUK
  2. 2.British Antarctic SurveyNERCCambridgeUK

Personalised recommendations