Advertisement

Marine Biology

, Volume 153, Issue 4, pp 673–688 | Cite as

Stable isotopes (δ13C, δ15N) and modelling as tools to estimate the trophic ecology of cultivated oysters in two contrasting environments

  • Julio César Marín Leal
  • Stanislas Dubois
  • Francis Orvain
  • Robert Galois
  • Jean-Louis Blin
  • Michel Ropert
  • Marie-Paule Bataillé
  • Alain Ourry
  • Sébastien Lefebvre
Research Article

Abstract

Food sources for cultivated marine bivalves generally are not well identified, although they are essential for a better understanding of coastal ecosystems and for the sustainability of shellfish farming activities. In addition to phytoplankton, other organic matter sources (OMS), such as microphytobenthos and detritus (of terrestrial or marine origins), can contribute significantly to the growth of marine bivalves. The aim of this study was to identify the potential food sources and to estimate their contributions to the growth of the Pacific oyster (Crassostrea gigas) in two contrasting trophic environments of Normandy (France): the Baie des Veys (BDV) and the Lingreville area (LIN). Two sites were studied in the BDV area (BDV-S and BDV-N) and one in the LIN area. To estimate the contribution of each type of OMS, we used a combination of stable natural isotope composition (δ13C, δ15N) analysis of OMS and oyster tissue together with a modelling exercise. Field sampling was conducted every 2 months over 1 year. The sampled sources were suspended particulate organic matter from marine (PhyOM) and terrestrial (TOM) origins, microphytobenthos (MPB), detrital organic matter from the superficial sediment (SOM), and macroalgae (Ulva sp., ULV). A statistical mixing model coupled to a bioenergetic model was used to calculate the contributions of each different source at different seasons. Results showed that isotopic composition of the animal flesh varied with respect to the potential OMS over the year within each ecosystem. Significant differences were also observed among the three locations. For instance, the δ13C and δ15N values of the oysters ranged from −20.0 to −19.1‰ and from 6.9 to 10.8‰ at BDV-S, from −19.4 to −18.1‰ and from 6.4 to 10.0‰ at BDV-N, and from −21.8 to −19.4‰ and from 6.3 to 8.3‰ at LIN. The contributions of the different sources to oyster growth differed depending on the ecosystem and on the period of the year. Phytoplankton (PhyOM) predominated as the principal food source for oysters (particularly in the LIN location). MPB, TOM, and ULV detritus also possibly contributed to oysters’ diet during summer and autumn at the BDV-S and BDV-N sites. SOM was not considered an OMS because it was already a mix of the other four OMS, but rather a trophic reservoir that potentially mirrored the trophic functioning of marine ecosystems.

Keywords

Phytoplankton Microalgae Particulate Organic Carbon Isotopic Signature Ulva 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the Regional Council of Basse Normandie, the Agence de l’Eau Seine-Normandie, DIREN/DRAM/IFOP and Universidad del Zulia (Venezuela) in the field of the POMOYSTER program. The authors would like to thank SMEL, IFREMER, CREC, and E. Leroullier for their technical assistance, and also Sea Pen Scientific Writing LLC for editorial assistance. Finally, we would like to thank the comments of three anonymous reviewers who helped in improving the manuscript.

References

  1. Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins paramètres et analyses. Editions IFREMER, Plouzané, FinistèreGoogle Scholar
  2. Andrews J, Greenaway A, Dennis P (1998) Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts bay, Kingston Harbour, Jamaica. Estuar Coast Shelf Sci 46:743–756CrossRefGoogle Scholar
  3. Barillé L, Prou J, Héral M, Razet D (1997) Effects of high natural seston concentrations on the feeding, selection, and absorption of the oyster Crassostrea gigas (Thunberg). J Exp Mar Biol Ecol 212:149–172CrossRefGoogle Scholar
  4. Behringer DC, Butler MJ (2006) Density-dependent population dynamics in juvenile Panulirus argus (Latreille): the impact of artificial density enhancement. J Exp Mar Biol Ecol 334:84–95CrossRefGoogle Scholar
  5. Bianchi T, Argyrou M (1997) Temporal and spatial dynamics of particulate organic carbon in the lake Pontchartrain Estuary, Southeast Louisiana, USA. Estuar Coast Shelf Sci 45:557–569CrossRefGoogle Scholar
  6. Blanchard G, Chretiennot-Dinet MJ, Dinet A, Robert JM (1988) Méthode simplifiée pour l’extraction du microphytobenthos des sédiments marins par le gel de silice Ludox. C R Acad Sci Paris, Série III 307:569–576Google Scholar
  7. Bougrier S, Hawkins AJS, Héral M (1997) Preingestive selection of different microalgal mixture in Crassostrea gigas and Mytilus edulis, analysed by flow cytometry. Aquaculture 150:123–134CrossRefGoogle Scholar
  8. Cognie B, Barillé L (1999) Does bivalve mucus favour the growth of their main food source, microalgae? Oceanol Acta 22:441–450CrossRefGoogle Scholar
  9. Costil K, Royer J, Ropert M, Soletchnik P, Mathieu M (2005) Spatio-temporal variations in biological performances and summer mortality of the oyster Crassostrea gigas in Normandy (France). Helgol Mar Res 59:286–300CrossRefGoogle Scholar
  10. Crosby MP, Newell RIE (1990) Bacterial mediation in the utilization of carbon and nitrogen from detrital complexes by Crassostrea virginica. Limnol Oceanogr 35:625–639CrossRefGoogle Scholar
  11. Currin CA, Newell SY, Paerl HW (1995) The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs: considerations based on multiple stable-isotope analysis. Mar Ecol Prog Ser 121:99–116CrossRefGoogle Scholar
  12. Dame RF, Prins T (1998) Bivalve carrying capacity in coastal ecosystems. Aquat Ecol 31:409–421CrossRefGoogle Scholar
  13. de Jonge VN, Colijn F (1994) Dynamics of microphytobenthos biomass in the Ems estuary. Mar Ecol Prog Ser 104:185–196CrossRefGoogle Scholar
  14. Deegan LA, Garritt RH (1997) Evidence for spatial variability in estuarine food webs. Mar Ecol Prog Ser 147:31–47CrossRefGoogle Scholar
  15. Doi H, Matsumasa M, Toya T, Satoh N, Mizota C, Maki Y, Kikuchi E (2005) Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses. Estuar Coast Shelf Sci 64:316–322CrossRefGoogle Scholar
  16. Dubois S, Orvain F, Marín Leal JC, Ropert M, Lefebvre S (2007a) Small-scale spatial variability of food partitioning between cultivated oysters and associated suspension-feeding species, as revealed by stable isotopes. Mar Ecol Prog Ser 336:151–160CrossRefGoogle Scholar
  17. Dubois S, Blin JL, Bouchaud B, Lefebvre S (2007b) Isotope trophic step fractionation of suspension-feeding species: implications for food partitioning in coastal ecosystems. J Exp Mar Biol Ecol 351:121–128CrossRefGoogle Scholar
  18. Dupuy C, Vaquer A, Lam-Höai T, Rougier C, Mazouni N, Lautier J, Collos Y, Le Gall S (2000) Feeding rate of the Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar Ecol Prog Ser 205:171–184CrossRefGoogle Scholar
  19. Franco-Nava MA, Blancheton JP, Deviller G, Le-Gall JY (2004) Particulate matter dynamics and transformations in a recirculating aquaculture system: application of stable isotope tracers in seabass rearing. Aquac Eng 31:135–155CrossRefGoogle Scholar
  20. Fry B (2006) Stable isotope ecology. Springer, New YorkCrossRefGoogle Scholar
  21. Gaye-Siessegger J, Focken U, Muetzel S, Abel H, Becker K (2004) Feeding level and individual metabolic rate affect δ13C and δ15N values in carp: implications for food web studies. Oecologia 138:175–183CrossRefGoogle Scholar
  22. Gorokhova E, Hansson S (1999) An experimental study on variations in stable isotope carbon and nitrogen isotope fractionation during growth of Mysis mixta and Neomysis integer. Can J Fish Aquat Sci 56:2203–2210CrossRefGoogle Scholar
  23. Graham M, Eaves M, Farmer J, Dobson J, Fallick A (2001) A study of carbon and nitrogen stable isotope and elemental ratios as potential indicators of source and fate of organic matter in sediments of the Forth estuary, Scotland. Estuar Coast Shelf Sci 52:375–380CrossRefGoogle Scholar
  24. Gu B, Schelske CL, Brenner M (1996) Relationship between sediment and plankton isotope ratios (δ13C and δ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci 53:875–883CrossRefGoogle Scholar
  25. Harvey C, Hanson P, Essington T, Brown P, Kitchell J (2002) Using bioenergetics models to predict stable isotope ratios in fishes. Can J Fish Aquat Sci 59:115–124CrossRefGoogle Scholar
  26. Herman PMJ, Middelburg JJ, van de Koppel J, Heip CHR (1999) Ecology of estuarine macrobenthos. Adv Ecol Res 29:195–240CrossRefGoogle Scholar
  27. Herman PMJ, Middelburg JJ, Widdows J, Lucas CH, Heip CHR (2000) Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar Ecol Prog Ser 204:79–92CrossRefGoogle Scholar
  28. Herzka SZ (2005) Assessing connectivity of estuarine fishes based on stable isotope ratio analysis. Estuar Coast Shelf Sci 64:58–69CrossRefGoogle Scholar
  29. Hsieh HL, Kao WY, Chen CP, Liu PJ (2000) Detrital flows through the feeding pathway of the oyster (Crassostrea gigas) in a tropical shallow lagoon: δ13C signals. Mar Biol 136:677–684CrossRefGoogle Scholar
  30. Josefson AB, Forbes TL, Rosenberg R (2002) Fate of phytodetritus in marine sediments: functional importance of macrofaunal community. Mar Ecol Prog Ser 230:71–85CrossRefGoogle Scholar
  31. Jouenne F, Lefebvre S, Véron B, Lagadeuc Y (2007) Phytoplankton community structure and primary production in small intertidal estuarine-bay ecosystem (eastern English Channel, France). Mar Biol 151:805–825CrossRefGoogle Scholar
  32. Kang CK, Sauriau PG, Richard P, Blanchard G (1999) Food sources of the infaunal suspension-feeding bivalve Cerastoderma edule in a muddy sandflat of Marennes-Oléron bay, as determined by analyses of carbon and nitrogen stable isotopes. Mar Ecol Prog Ser 187:147–158CrossRefGoogle Scholar
  33. Kang CK, Lee YW, Choy EJ, Shin JK, Seo IS, Hong JS (2006) Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Mar Ecol Prog Ser 315:113–127CrossRefGoogle Scholar
  34. Langdon CJ, Newell RIE (1990) Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica the mussel Geukensia demissa. Mar Ecol Prog Ser 58:299–310CrossRefGoogle Scholar
  35. Lorrain A, Savoye N, Chauvaud L, Paulet YM, Naulet N (2003) Decarbonatation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal Chim Acta 491:125–133CrossRefGoogle Scholar
  36. Lundsgaard C, Olesen M (1997) The origin of sedimenting detrital matter in a coastal system. Limnol Oceanogr 42:1001–1005CrossRefGoogle Scholar
  37. Maksymowska D, Richard P, Piekarek-Jankowska H, Piera P (2000) Chemical and isotopic composition of the organic matter sources in the gulf of Gdansk (Southern Baltic Sea). Estuar Coast Shelf Sci 51:585–598CrossRefGoogle Scholar
  38. McCallister SJ, Bauer J, Ducklow H, Canuel E (2006) Sources of estuarine dissolved and particulate organic matter: a multi-tracer approach. Org Geochem 37:454–468CrossRefGoogle Scholar
  39. McCutchan JH, Lewis WM, Kendhall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390CrossRefGoogle Scholar
  40. Middelburg JJ, Nieuwenhuize J (1998) Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde Estuary. Mar Chem 60:217–225CrossRefGoogle Scholar
  41. Miles A, Sundbäck K (2000) Diel variation in microphytobenthos productivity in areas of different tidal amplitude. Mar Ecol Prog Ser 205:11–22CrossRefGoogle Scholar
  42. Orvain F, Sauriau PG, Le Hir P (2003) A model of fluff layer erosion and subsequent bed erosion in the presence of the bioturbator, Hydrobia ulvae. J Mar Res 61:823–851CrossRefGoogle Scholar
  43. Page HM, Lastra M (2003) Diet of intertidal bivalves in the Ría de Arosa (NW Spain): evidence from stable C and N isotope analysis. Mar Biol 143:519–532CrossRefGoogle Scholar
  44. Paulet YM, Lorrain A, Richard J, Pouvreau S (2006) Experimental shift in diet δ13C: a potential tool for ecophysiological studies in marine bivalves. Org Geochem 37:1359–1370CrossRefGoogle Scholar
  45. Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261–269CrossRefGoogle Scholar
  46. Piola RF, Moore SK, Suthers IM (2006) Carbon and nitrogen stable isotope analysis of three types of oyster tissue in an impacted estuary. Estuar Coast Shelf Sci 66:255–266CrossRefGoogle Scholar
  47. Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189CrossRefGoogle Scholar
  48. Pouvreau S, Bourles Y, Lefebvre S, Gangnery A, Alunno-Bruscia M (2006) Application of a dynamic energy budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. J Sea Res 56:156–167CrossRefGoogle Scholar
  49. Press WH, Teukolsky SA, Vetterling WT (2003) Numerical recipes in Fortran 77: the art of scientific computing. Cambridge University Press, LondonGoogle Scholar
  50. Pruell RJ, Taplin BK, Lake JL, Jayaraman S (2006) Nitrogen isotope ratios in estuarine biota collected along a nutrient gradient in Narragansett Bay, Rhode Island, USA. Mar Pollut Bull 52:612–620CrossRefGoogle Scholar
  51. Richard P, Riera P, Galois R (1997) Temporal variations in the chemical and carbon isotope compositions of marine and terrestrial organic inputs in the bay of Marennes-Oléron, France. J Coast Res 13:879–889Google Scholar
  52. Riera P, Richard P (1996) Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuar Coast Shelf Sci 42:347–360CrossRefGoogle Scholar
  53. Riera P, Richard P (1997) Temporal variation of δ13C in particulate organic matter and oyster Crassostrea gigas in Marennes-Oléron bay (France): effect of freshwater inflow. Mar Ecol Prog Ser 147:105–115CrossRefGoogle Scholar
  54. Riera P, Stal L, Nieuwenhuize J, Richard P, Blanchard G, Gentil F (1999) Determination of food sources for benthic invertebrates in a salt marsh (Aiguillon bay, France) by carbon and nitrogen stable isotopes: importance of locally produced sources. Mar Ecol Prog Ser 187:301–307CrossRefGoogle Scholar
  55. Ryba S, Burgess R (2002) Effects of sample preparation on the measurement of organic carbon, hydrogen, nitrogen, sulfur, and oxygen concentrations in marine sediments. Chemosphere 48:139–147CrossRefGoogle Scholar
  56. Savoye N, Aminot A, Tréguer P, Fontugne M, Naulet N, Kérouel R (2003) Dynamics of particulate organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (bay of Seine, France). Mar Ecol Prog Ser 255:27–41CrossRefGoogle Scholar
  57. Scheiner SM (1993) MANOVA Multiple response variable and multispecies interactions. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, London, pp 99–115Google Scholar
  58. Schröder-Adams C (2006) Estuaries of the past and present: a biofacies perspective. Sediment Geol 190:289–298CrossRefGoogle Scholar
  59. Sponheimer M, Robinson T, Ayliffe L, Passey B, Roeder B, Shipley L, Lopez E, Cerling T, Dearing D, Ehleringer J (2003) An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Can J Zool 81:871–876CrossRefGoogle Scholar
  60. Usui T, Nagao S, Yamamoto M, Suzuki K, Kudo I, Montani S, Noda A, Minagawa M (2006) Distribution and sources of organic matter in surficial sediments on the shelf and slope off Tokachi, western North Pacific, inferred from C and N stable isotopes and C/N ratios. Mar Chem 98:241–259CrossRefGoogle Scholar
  61. Vizzini S, Mazzola A (2003) Seasonal variations in the stable carbon and nitrogen isotope ratios (13C/12C and 15N/14N) of primary producers and consumers in a western Mediterranean coastal lagoon. Mar Biol 142:1009–1018CrossRefGoogle Scholar
  62. Vizzini S, Mazzola A (2006) Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: evidence for spatial variability. Estuar Coast Shelf Sci 66:459–467CrossRefGoogle Scholar
  63. Von Ende CN (1993) Repeated measures analysis: growth and other time-dependent measures. In: Scheiner SM, Gurevitch J (eds) Design and analysis of ecological experiments. Chapman and Hall, London, pp 99–115Google Scholar
  64. Ward JE, Levinton JS, Shumway SE, Cucci T (1998) Particle sorting in bivalves: in vivo determination of the pallial organs of selection. Mar Biol 131:283–292CrossRefGoogle Scholar
  65. Welschmeyer NA (1994) Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr 39:1985–1992CrossRefGoogle Scholar
  66. Wysocki LA, Bianchi TS, Powell RT, Reuss N (2006) Spatial variability in the coupling of organic carbon, nutrients, and phytoplankton pigments in surface waters and sediments of the Mississippi River plume. Estuar Coast Shelf Sci 69:47–63CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Julio César Marín Leal
    • 1
    • 2
  • Stanislas Dubois
    • 1
  • Francis Orvain
    • 1
  • Robert Galois
    • 3
  • Jean-Louis Blin
    • 4
  • Michel Ropert
    • 5
  • Marie-Paule Bataillé
    • 6
  • Alain Ourry
    • 6
  • Sébastien Lefebvre
    • 1
  1. 1.Laboratoire de Biologie et Biotechnologies MarinesUMR 100 IFREMER-Université de Caen Basse-Normandie “Physiologie et Ecophysiologie des Mollusques Marins (PE2M)”Caen CedexFrance
  2. 2.Departamento de Ingeniería Sanitaria y Ambiental, Escuela de Ingeniería Civil, Facultad de IngenieríaLa Universidad del ZuliaMaracaiboVenezuela
  3. 3.Centre de Recherche sur les Ecosystèmes Littoraux Anthropisés (CRELA)UMR 6217 CNRS-IFREMER-Université de La RochelleL’HoumeauFrance
  4. 4.Syndicat Mixte pour l’Équipement du Littoral (SMEL)Blainville sur MerFrance
  5. 5.Laboratoire Environnement Ressources de NormandieIFREMERPort-en-BessinFrance
  6. 6.UMR 950 INRA-Université de Caen Basse-Normandie “Écophysiologie Végétale, Agronomie et Nutrition N.C.S. (EVA)”Caen CedexFrance

Personalised recommendations