Marine Biology

, Volume 153, Issue 3, pp 421–429 | Cite as

Completely disjunct mitochondrial DNA haplotype distribution without a phylogeographic break in a planktonic developing gastropod

  • Heidi Van den BroeckEmail author
  • Karin Breugelmans
  • Hans De Wolf
  • Thierry Backeljau
Research Article


Planktonic developing organisms are generally assumed to be good dispersers showing little genetic structuring in neutral markers. At first glance, this also applies to the planktonic developing periwinkle Tectarius striatus, an endemic gastropod from Macaronesia (i.e. Azores, Madeira, Canary Islands and Cape Verde Islands), where the only sign of genetic structuring hitherto is provided by a non-significant allozyme/RAPD heterogeneity between the Cape Verde Islands and the other archipelagos. However, partial sequences of the mitochondrial cytochrome b and cytochrome oxidase I genes now show that the Cape Verde Islands and the three other archipelagos have no haplotypes in common, whereas the latter three do share several haplotypes. Nevertheless, this highly disjunct haplotype distribution does not entail a phylogeographic break separating the haplotypes of both areas in two reciprocally monophyletic groups. This remarkable geographic and phylogenetic structuring may be explained by assuming that T. striatus colonized the Macaronesian archipelagos in periods when sea levels were lower (and/or volcanic activity was higher), so that seamounts peaked above sea level and could act as stepping-stones. Yet, after the last glacial period seamounts submerged, thus preventing further stepping-stones mediated dispersal of T. striatus between the Cape Verde Islands and the other archipelagos, while not affecting dispersal among the latter because of their closer proximity and connectivity. Hence, these contrasting patterns of neutral genetic variation in T. striatus show that genetic structuring in planktonic developing species may be far more complex than is usually assumed.


Gene Flow Cape Verde Island Neutral Genetic Variation Ancestral Area Nest Clade Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the following grants to T. Backeljau: EU-project EVK3-2001-00048 “EUMAR”, OSTC-project MO/36/008, FWO-project G.0235.02, and UA-project RAFO/1 BACKT KP02. H. De Wolf is a Postdoctoral Fellow of the Fund for Scientific Research, Flanders (Belgium) (F.W.O.). This paper benefited from discussions during the CORONA-meeting in Plymouth (2004).


  1. Ávila SP, Azevedo JMN (1997) Shallow-water molluscs from the Formigas islets, Azores, collected during the “Santa Maria e Formigas 1990” scientific expedition. Açoreana 8:323–330Google Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Avise JC (2004) Molecular markers, natural history and evolution, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  4. Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol Ecol 11:659–674CrossRefGoogle Scholar
  5. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  6. De Wolf H, Backeljau T, Medeiros R, Verhagen R (1997) Microgeographical shell variation in Littorina striata, a planktonic developing periwinkle. Mar Biol 129:331–342CrossRefGoogle Scholar
  7. De Wolf H, Backeljau T, Van Dongen S, Verhagen R (1998a) Large-scale patterns of shell variation in Littorina striata, a planktonic developing periwinkle from Macaronesia (Mollusca: Prosobranchia). Mar Biol 131:309–317CrossRefGoogle Scholar
  8. De Wolf H, Backeljau T, Verhagen R (1998b) Congruence between allozyme and RAPD data in assessing macrogeographical genetic variation in the periwinkle Littorina striata (Mollusca, Gastropoda). Heredity 81:486–492CrossRefGoogle Scholar
  9. De Wolf H, Backeljau T, Verhagen R (1998c) Lack of significant esterase and myoglobin differentiation in the periwinkle, Littorina striata (Gastropoda, Prosobranchia). Hydrobiologia 378:27–32CrossRefGoogle Scholar
  10. De Wolf H, Backeljau T, Verhagen R (1998d) Spatio-temporal genetic structure and gene flow between two distinct shell morphs of the planktonic developing periwinkle Littorina striata (Mollusca: Prosobranchia). Mar Ecol Prog Ser 163:155–163CrossRefGoogle Scholar
  11. De Wolf H, Verhagen R, Backeljau T (2000) Large scale population structure and gene flow in the planktonic developing periwinkle, Littorina striata, in Macaronesia (Mollusca: Gastropoda). J Exp Mar Biol Ecol 246:69–83CrossRefGoogle Scholar
  12. Domingues VS, Almada VC, Santos RS, Brito A, Bernardi G (2007) Phylogeography and evolution of the Tripterygion delaisi (Pisces, Blennioidei). Mar Biol 150:509–519CrossRefGoogle Scholar
  13. Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136:343–359PubMedPubMedCentralGoogle Scholar
  14. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  15. Gad G, Schminke HK (2004) How important are seamounts for the dispersal of interstitial meiofauna? Arch Fish Mar Res 51:43–54Google Scholar
  16. Geldmacher J, Hoernle K (2000) The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): recycling of Paleozoic (≤500 Ma) oceanic lithosphere. Earth Planet Sci Lett 183:73–92CrossRefGoogle Scholar
  17. Geldmacher J, Hoernle K, van den Bogaard P, Zankl G, Garbe-Schonberg D (2001) Earlier history of the ≥70-Ma-old Canary hotspot based on the temporal and geochemical evolution of the Selvagen Archipelago and neighboring seamounts in the eastern North Atlantic. J Volcanol Geotherm Res 111:55–87CrossRefGoogle Scholar
  18. Gillet P, Dauvin JC (2000) Polychaetes from the Atlantic seamounts of the southern Azores: biogeographical distribution and reproductive patterns. J Mar Biol Assoc UK 80:1019–1029CrossRefGoogle Scholar
  19. Hasegawa M, Kishino H, Yano TA (1985) Dating of the human ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefGoogle Scholar
  20. Hedgecock D (1986) Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates. Bull Mar Sci 39:550–564Google Scholar
  21. Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290Google Scholar
  22. Hernandez-Guerra A, Fraile-Nuez E, Borges R, Lopez-Laatzen F, Velez-Belchi P, Parrilla G, Muller TJ (2003) Transport variability in the Lanzarote passage (eastern boundary current of the North Atlantic subtropical Gyre). Deep Sea Res Part I Oceanogr Res Pap 50:189–200CrossRefGoogle Scholar
  23. Johannesson K (1988) The paradox of Rockall—Why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (Littorina littorea). Mar Biol 99:507–513CrossRefGoogle Scholar
  24. Jolly MT, Jollivet D, Gentil F, Thiebaut E, Viard F (2005) Sharp genetic break between Atlantic and English Channel populations of the polychaete Pectinaria koreni, along the North coast of France. Heredity 94:23–32CrossRefGoogle Scholar
  25. Landau B, Marquet R, Grigis M (2003) The early Pliocene Gastropoda (Mollusca) of Estepona, Southern Spain. Part 2: Orthogastropoda, Neotaenioglossa. Palaeontos 4:1–109Google Scholar
  26. Lee T, Ó Foighil D (2004) Hidden Floridian biodiversity: mitochondrial and nuclear gene trees reveal four cryptic species within the scorched mussel, Brachidontes exustus, species complex. Mol Ecol 13:3527–3542CrossRefGoogle Scholar
  27. Mardulyn P (2001) Phylogeography of the Vosges mountains populations of Gonioctena pallida (Coleoptera: Chrysomelidae): a nested clade analysis of mitochondrial DNA haplotypes. Mol Ecol 10:1751–1763CrossRefGoogle Scholar
  28. Mitchell-Thomé RC (1976) Geology of the Middle Atlantic Islands, Gebruder Borntraeger, BerlinGoogle Scholar
  29. Mourino B, Fernandez E, Escanez J, De Armas D, Giraud S, Sinha B, Pingree R (2002) A Subtropical Oceanic Ring of Magnitude (STORM) in the Eastern North Atlantic: physical, chemical and biological properties. Deep Sea Res Part II Top Stud Oceanogr 49:4003–4021CrossRefGoogle Scholar
  30. Palumbi SR (1996) Macrospatial genetic structure and speciation in marine taxa with high dispersal abilities. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies and protocols. Wiley-Liss, New York, pp 101–117Google Scholar
  31. Pepper M, Doughty P, Keogh JS (2006) Molecular phylogeny and phylogeography of the Australian Diplodactylus stenodactylus (Gekkota; Reptilia) species-group based on mitochondrial and nuclear genes reveals an ancient split between Pilbara and non-Pilbara D. stenodactylus. Mol Phylogenet Evol 41:539–555CrossRefGoogle Scholar
  32. Pfenninger M, Posada D (2002) Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): fragmentation, corridor migration, and secondary contact. Evolution 56:1776–1788CrossRefGoogle Scholar
  33. Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  34. Posada D, Crandall KA (2001) Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16:37–45CrossRefGoogle Scholar
  35. Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488CrossRefGoogle Scholar
  36. Reeb CA, Avise JC (1990) A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American oyster, Crassostrea virginica. Genetics 124:397–406PubMedPubMedCentralGoogle Scholar
  37. Reid DG (1996) Systematics and evolution of Littorina, Ray Society, LondonGoogle Scholar
  38. Reid DG, Rumbak E, Thomas RH (1996) DNA, morphology and fossils: phylogeny and evolutionary rates of the gastropod genus Littorina. Philos Trans R Soc Lond B Biol Sci 351:877–895CrossRefGoogle Scholar
  39. Rosewater J (1981) The family Littorinidae in tropical West Africa. Atlantide Rep 13:7–48Google Scholar
  40. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefGoogle Scholar
  41. Sá-Pinto A, Branco M, Harris DJ, Alexandrino P (2005) Phylogeny and phylogeography of the genus Patella based on mitochondrial DNA sequence data. J Exp Mar Biol Ecol 325:95–110CrossRefGoogle Scholar
  42. Schiebel R, Waniek J, Zeltner A, Alves M (2002) Impact of the Azores Front on the distribution of planktic foraminifers, shelled gastropods, and coccolithophorids. Deep Sea Res Part II Top Stud Oceanogr 49:4035–4050CrossRefGoogle Scholar
  43. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver 2.000, Genetics and Biometry Lab, Department of Anthropology, University of Geneva, SwitzerlandGoogle Scholar
  44. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  45. Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109CrossRefGoogle Scholar
  46. Templeton AR (1998) Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7:381–397CrossRefGoogle Scholar
  47. Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol Ecol 13:789–809CrossRefGoogle Scholar
  48. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633PubMedPubMedCentralGoogle Scholar
  49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  50. Tiedemann R, Paulus KB, Scheer M, Von Kistowski KG, Skίrnisson K, Bloch D, Dam M (2004) Mitochondrial DNA and microsatellite variation in the eider duck (Somateria mollissima) indicate stepwise postglacial colonization of Europe and limited current long-distance dispersal. Mol Ecol 13:1481–1494CrossRefGoogle Scholar
  51. van der Strate HJ, Boele-Bos SA, Olsen JL, van de Zande L, Stam WT (2002) Phylogeographic studies in the tropical seaweed Cladophoropsis membranacea (Chlorophyta, Ulvophyceae) reveal a cryptic species complex. J Phycol 38:572–582CrossRefGoogle Scholar
  52. Warner RR (1997) Evolutionary ecology: how to reconcile pelagic dispersal with local adaptation. Coral Reefs 16:S115–S120CrossRefGoogle Scholar
  53. Waters JM, King TM, O’Loughlin PM, Spencer HG (2005) Phylogeographical disjunction in abundant high-dispersal littoral gastropods. Mol Ecol 14:2789–2802CrossRefGoogle Scholar
  54. Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:407CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Heidi Van den Broeck
    • 1
    • 2
    Email author
  • Karin Breugelmans
    • 1
  • Hans De Wolf
    • 2
  • Thierry Backeljau
    • 1
    • 3
  1. 1.Malacology Section, Department of InvertebratesRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  2. 2.Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of BiologyUniversity of AntwerpAntwerpBelgium
  3. 3.Evolutionary Biology Group, Department of BiologyUniversity of AntwerpAntwerpBelgium

Personalised recommendations