Marine Biology

, Volume 151, Issue 4, pp 1585–1595 | Cite as

Temporal and spatial distribution of three supralittoral amphipod species on a sandy beach of central Italy

  • Laura Pavesi
  • Valentina Iannilli
  • Paola Zarattini
  • Elvira De MatthaeisEmail author
Research Article


The distribution of three talitrid species—Talitrus saltator (Montagu, 1808), Orchestia gammarella (Pallas, 1766), Platorchestia platensis (Kroyer, 1845)—in the beach-dune system at the mouth of the Mignone River (central Italy) was analysed. It was related to the variations of the following abiotic factors: temperature, penetrability, pH, conductivity and moisture of the sediment. The beach-dune system is influenced by human impact and natural erosion. All species showed a maximum capture frequency in November, while the abundance decreased to a minimum in July. T. saltator was dominant on the beach, the other two along the riverbank. Juveniles were abundant along the riverbank; they were most abundant in November and almost disappeared in summer. T. saltator was more abundant near the waterline during the hottest months and occupied the inner beach in winter, with occasional presences on the dune. Regression analysis between the abiotic factors and species abundance showed a positive relationship with pH and temperature for T. saltator, while O. gammarella was negatively related to pH. Canonical correspondence analysis (CCA) showed that penetrability, moisture and temperature had the greatest influence on the species. T. saltator was almost entirely confined to the beach transects and strongly associated with penetrability, temperature and pH values. O. gammarella was mostly associated with the riverbank and P. platensis only found there and on a nearby pool. The two species were mainly influenced by moisture and variations in grain sizes of the sediment.


Beach Canonical Correspondence Analysis Sandy Beach Pitfall Trap Trap Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank D. Mariotti, for helping with the field and laboratory work, and A. Pavesi for data on the flora. L. Chelazzi kindly provided procedures for sampling and laboratory analysis, and P. Bellotti hosted us in his lab for the granulometric analysis. We wish to thank V. Ketmaier and one anonymous referee for helpful criticisms on first draft of this manuscript. The work reported here was supported by grants from the Ministero dell’Istruzione, dell’Università e della Ricerca, MIUR (PRIN 2002) and from EU (MEDCORE project, ICA3-2002-10003). All experiments carried out, comply with current Italian laws.


  1. Anastacio PM, Goncalves SC, Pardal MA, Marques JC (2003) A model for amphipod (Talitrus saltator) population dynamics. Estuar Coast Shelf Sci 58S:149–157CrossRefGoogle Scholar
  2. Audisio P (2002) Litorali sabbiosi e organismi animali. From: Quaderni Habitat–Dune e spiagge sabbiose 63–117Google Scholar
  3. Borgioli C, Marchetti GM, Scapini F (1999) Variation in zonal recovery in four Talitrus saltator populations from different coastlines: a comparison of orientation in the field and in an experimental arena. Behav Ecol Sociobiol 45:79–85CrossRefGoogle Scholar
  4. Bousfield EL (1984) Recent advances in the systematics and biogeography of landhoppers (Amphipoda:Talitridae) of the Indo-Pacific region. In: Radovsky FJ, Raven PH, Sohmer SH (eds) Biogeography of the Tropical Pacific. Association of Systematic Collections & the Bernice P. Bishop Museum, Honolulu, pp 171–210Google Scholar
  5. Colombini I, Aloia A, Fallaci M, Pezzoli G, Chelazzi L (1998) Spatial use of an equatorial coastal system (East Africa) by an arthropod community in relation to periodically varying environmental conditions. Estuar Coast Shelf Sci 47:633–647CrossRefGoogle Scholar
  6. Chelazzi L, De Matthaeis E, Colombini I, Fallaci M, Bandini V, Tozzi C (2005) Abundance, zonation and ecological indices of a coleopteran community from a sandy beach-dune ecosystem of the southern adriatic coast, Italy. Vie et milieu 55(2):127–141Google Scholar
  7. De Matthaeis E, Ketmaier V, Davolos D, Cobolli M (1999) Strutturazione genetica e pattern di flusso genico in quattro specie di Anfipodi Talitridi sopralitorali dell’area egea. Biogeographia XX:95–104Google Scholar
  8. De Matthaeis E, Davolos D, Cobolli M, Ketmaier V (2000a) Isolation by distance in equilibrium and non-equilibrium populations of four talitrid species in the Mediterranean Sea. Evolution 54:1606–1613CrossRefGoogle Scholar
  9. De Matthaeis E, Ketmaier V, Davolos D, Schembri PJ (2000b) Pattern of genetic diversity in Mediterranean supralittoral amphipods (Crustacea, Amphipoda). Pol Arch Hydrobiol 47(3–3):473–487Google Scholar
  10. Fallaci M, Aloia A, Colombini I, Scapini F, Chelazzi L (1999) Differences in behavioural strategies between two sympatric talitrids (Amphipoda) inhabiting an exposed sandy beach of the French Atlantic Coast. Estuar Coast Shelf Sci 48:469–482CrossRefGoogle Scholar
  11. Fallaci M, Colombini I, Lagar M, Scapini F (2003) Distribution patterns of different age classes and sexes in a Tyrrhenian population of Talitrus saltator (Montagu). Mar Biol 142:101–110CrossRefGoogle Scholar
  12. Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26CrossRefGoogle Scholar
  13. Jedrzejczac MF (2002) Stranded Zostera marina L. vs wrack fauna community interactions on a Baltic sandy beach (Hel, Poland): a short-term pilot study. Part II. Driftline effects of succession changes and colonisation of beach fauna. Oceanologia 44(3):367–387Google Scholar
  14. Jones NS (1948) The ecology of the Amphipoda of the south of the Isle of Man. J Mar Biol Ass UK 27:400–439CrossRefGoogle Scholar
  15. Ketmaier V, Iuri V, De Matthaeis E (2005a) Genetic resources and molecular markers in Talitrus saltator (Amphipoda: Talitridae) from the beach of Smir. Ressources génétiques et marqueurs moléculaires chez Talitrus saltator (Amphipoda, Talitridae) de la plage de Smir. In: Bayed A, Scapini F (eds) Special Issue of Série des travaux de l’Institut Scientifique (Université Mohammed V-Agdal), pp 55–60Google Scholar
  16. Ketmaier V, Scapini F, De Matthaeis E (2003) Exploratory analysis of talitrid population genetics as an indicator of the quality of sandy beaches. Estuar Coast Shelf Sci 58:159–167CrossRefGoogle Scholar
  17. Ketmaier V, Scapini F, De Matthaeis E (2005b) Beach dynamics have an impact on the variation of genetic and behavioral traits in the sandhopper Talitrus saltator (Crustacea, Amphipoda): a study case in southern Tuscany. The Mediterranean coastal areas from watershed to the sea: interactions and changes. MEDCORE Project Internat. Conf. Florence, Italy, 10–14 Nov. 2005. Abstract volumeGoogle Scholar
  18. La Greca M (2002) Conclusioni al XXXIII Congresso della Società Italiana di Biogeographia: La presenza dell’uomo e i problemi posti dall’uso degli ambienti naturali costieri. Biogeographia XXIII:217–232Google Scholar
  19. Marques JC, Goncalves SC, Pardal MA, Chelazzi L, Colombini I, Fallaci M, Bouslama MF, El Gtari M, Charfi-Cheikhrouha F, Scapini F (2003) Comparison of Talitrus saltator (Amphipoda, Talitridae) biology, dynamics, and secondary production in Atlantic (Portugal) and Mediterranean (Italy and Tunisia) populations. Estuar Coast Shelf Sci 58S:127–148CrossRefGoogle Scholar
  20. Morritt D, Spicer JI (1998) The physiological ecology of talitrid amphipods: an update. Can J Zool 76:1965–1982CrossRefGoogle Scholar
  21. Nardi M, Morgan E, Scapini F (2003) Seasonal variation in the free-running period in two Talitrus saltator populations from Italian beaches differing in morphodynamics and human disturbance. Estuar Coast Shelf Sci 58S:199–206CrossRefGoogle Scholar
  22. Papi F, Pardi L (1953) Ricerche sull’orientamento di Talitrus saltator (Montagu) (Crustacea-Amphipoda). II. Sui fattori che regolano la variazione dell’angolo di orientamento nel corso del giorno. L’orientamento di notte. L’orientamento diurno di altre popolazioni. Zeitschrift fur vegleichende Physiologie 35:490–518Google Scholar
  23. Parea GC (1978) Trasporto dei sedimenti ed erosione costiera lungo il litorale fra il Tronto ed il Fortore (Adriatico centrale). Mem Soc Geol Ital 19:361–367Google Scholar
  24. Persson L-E (2001) Dispersal of Platorchestia platensis (Kroyer) (Amphipoda:Talitridae) along Swedish coasts: a slow but successful process. Estuar Coast Shelf Sci 52:201–210CrossRefGoogle Scholar
  25. Richardson AMM, Swain R, Smith SJ (1991) Local distribution of sandhopers and landhoppers (Crustacea: Amphipoda: Talitridae) in the coastal zone of western Tasmania. Hydrobiologia 223:127–140CrossRefGoogle Scholar
  26. Scapini F, Chelazzi L, Colombini I, Fallaci M (1992) Surface activity, zonation and migration of Talitrus saltator on a Mediterranean beach. Mar Biol 128:63–72CrossRefGoogle Scholar
  27. Scapini F, Buiatti M, De Matthaeis E, Mattoccia M (1995) Orientation behaviour and heterozygosity of sandhopper populations in relation to stability of beach environments. J Evol Biol 8:43–52CrossRefGoogle Scholar
  28. Scapini F (1997) Variation in scototaxis and orientation adaptation of Talitrus saltator populations subjected to different ecological constraints. Estuar Coast Shelf Sci 44:139–146CrossRefGoogle Scholar
  29. Ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179CrossRefGoogle Scholar
  30. Ugolini A, Scapini F, Pardi L (1986) Interaction between solar orientation and landscape visibility in Talitrus saltator (Crustacea: Amphipoda). Mar Biol 90:449–460CrossRefGoogle Scholar
  31. Williams JA (1978) The annual pattern of reproduction of Talitrus saltator (Crustacea: Amphipoda:Talitridae). J Zool (London) 184:231–244CrossRefGoogle Scholar
  32. Williams JA (1980a) Environmental influence on the locomotor activity rhythm of T. saltator (Montagu) (Crustacea: Amphipoda). Mar Biol 57:7–16CrossRefGoogle Scholar
  33. Williams JA (1980b) The effect of dusk and dawn on the locomotor activity rhythm of T. saltator (Montagu) (Crustacea: Amphipoda). J Exp Mar Biol Ecol 42:285–297CrossRefGoogle Scholar
  34. Williams JA (1995) Burrow-zone distribution of the supralittoral amphipod T. saltator on Derbyhaven beach, Isle of Man—a possible mechanism for regulating desiccation stress? J Crust Biol 15(3):466–475CrossRefGoogle Scholar
  35. Williamson DI (1951) Studies in the biology of Talitridae (Crustacea: Amphipoda): visual orientation in Talitrus saltator. J Mar Biol Ass UK 30:91–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laura Pavesi
    • 1
  • Valentina Iannilli
    • 1
  • Paola Zarattini
    • 1
  • Elvira De Matthaeis
    • 1
    Email author
  1. 1.Dipartimento di Biologia Animale e dell’UomoUniversità di Roma “La Sapienza”RomeItaly

Personalised recommendations