Marine Biology

, Volume 151, Issue 4, pp 1479–1490 | Cite as

Negative interactions between two SW Atlantic intertidal crabs in soft-bottom habitats

  • Paulina MartinettoEmail author
  • Macarena Valiñas
  • Gabriela Palomo
  • Oscar Iribarne
Research Article


The intertidal crabs Chasmagnathus granulatus and Cyrtograpsus angulatus coexist across the SW Atlantic intertidal. Previous studies in this region suggest that C. granulatus displace C. angulatus in soft sediment, where C. granulatus build burrows (“burrowing beds”). We examined variation in abundance, size-frequency distribution, sex ratio, incidence of autotomies, and diet of both species in C. granulatus crab beds and adjacent areas without burrows. We also experimentally tested the hypothesis that in the absence of C. granulatus, C. angulatus will build burrows. Only large sized individuals of C. angulatus venture into C. granulatus crab beds. The sex ratio of C. angulatus was always biased towards females, with higher bias outside crab beds (1:8 outside, 1:2 inside). Although the items consumed in the crab beds did not differ from those consumed outside, the males of C. angulatus had a higher frequency of empty stomachs in crab beds. The incidence of limb autotomies of C. angulatus was higher outside C. granulatus crab bed areas. After a long rainy period in which C. granulatus was absent from these areas, the pattern of habitat use of C. angulatus changed. During this period C. angulatus showed higher abundance in the areas, where C. granulatus previously constructed burrows, and there were no differences between areas in any of the measured parameters. In the absence of C. granulatus, C. angulatus built their own burrows and never used C. granulatus burrows. The interaction between C. granulatus and C. angulatus may be a good example of competitive exclusion, when the shared resource is the access to surface soft-sediment.


Polychaete Intertidal Zone Empty Stomach Size Frequency Distribution Burrow Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Verónica García, Mauricio Escapa, Nora Peskin, Mirta Teichberg, and Jorge Gutiérrez for field assistance, and Joanna York and two anonymous reviewers for their comments on a first draft. This work was supported by grants from: Universidad Nacional de Mar del Plata (EXA 268/03), Fundación Antorchas (A-13900-13), CONICET (PIP 0686), Agencia Nacional de Promoción Científica y Tecnológica (PICT N 1-13527.) to O. Iribarne. PM and MV were supported by fellowships from CONICET; this is part of PM’s doctoral thesis. The experiment performed in this study complies with the current laws of Argentina.


  1. Boaventura D, Cancela da Fonseca L, Hawkins SJ (2002) Analysis of competitive interactions between the limpets Patella depressa Pennant and Patella vulgata L. on the northern coast of Portugal. J Exp Mar Biol Ecol 271:171–188CrossRefGoogle Scholar
  2. Bortolus A, Iribarne O (1999) Effects of the burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Mar Ecol Prog Ser 178:78–88CrossRefGoogle Scholar
  3. Boschi EE (2000) Species of decapods crustaceans and their distribution in the American marine zoogeographic provinces. Rev Invest Des Pesq (Argentina) 13:1–136Google Scholar
  4. Botto F, Iribarne O (1999) The effect of the burrowing crab Chasmagnathus granulata on the benthic community of a SW Atlantic coastal lagoon. J Exp Mar Biol Ecol 241:263–284CrossRefGoogle Scholar
  5. Botto F, Valiela I, Iribarne O, Martinetto P, Alberti J (2005) Impact of burrowing crabs on C and N sources, control, and transformations in sediments and food webs of SW Atlantic estuaries. Mar Ecol Prog Ser 293:155–164CrossRefGoogle Scholar
  6. Brenchley GA, Carlton JT (1983) Competitive displacement of native mud snails by introduced periwinkle in the New England intertidal zone. Biol Bull 165:543–558CrossRefGoogle Scholar
  7. Capitoli RR, Ortega EL (1993) Contribuição ao conhecimiento espectro trófico de Cyrtograpsus angulatus Dana nas enseadas vegetadas de águas rasas da Lagoa dos Patos, RS Brasil. Nauplius Río Grande Brasil 1:81–88Google Scholar
  8. Daleo P, Ribeiro P, Iribarne O (2003) The SW Atlantic burrowing crab Chasmagnathus granulatus Dana affects the distribution and survival of the fiddler crab Uca uruguayensis Nobili. J Exp Mar Biol Ecol 291:255–267. doi:10.1016/S0022-0981(03)00140-0CrossRefGoogle Scholar
  9. Devore JL (2000) Probability and statistics for engineering and the sciences, 5th edn. Duxbury, USAGoogle Scholar
  10. Escapa M, Iribarne O, Navarro D (2004) Indirect effect of intertidal burrowing crabs on infaunal zonation patterns, tidal behavior and risk of mortality. Estuaries 27:120–131CrossRefGoogle Scholar
  11. Gavio M, Iribarne O (1994) Distribución espacial, selección de hábitat y tasa de mortalidad de Cyrtograpsus angulatus en la albufera de Mar Chiquita: la importancia del canibalismo. II Taller sobre Cangrejos y Cangrejales. Universidad Nacional de Mar del PlataGoogle Scholar
  12. Fasano JL, Hernández MA, Isla FI, Schnack EJ (1982) Aspectos evolutivos y ambientales de la laguna Mar Chiquita (provincia de Buenos Aires, Argentina). Oceanológica Acta SP:285–292Google Scholar
  13. Hesthagen T, Heggens J (2003) Competitive habitat displacement of brown trout by Siberian sculpin: the role of size and density. J Fish Biol 62:222–236CrossRefGoogle Scholar
  14. Hollander M, Wolfe DA (1999) Nonparametric statistical methods, 2nd edn. Wiley, New YorkGoogle Scholar
  15. Iribarne O, Bortolus A, Botto F (1997) Between habitat differences in burrow characteristics and trophic modes in the southwestern Atlantic burrowing crab Chasmagnathus granulata. Mar Ecol Prog Ser 155:132–145CrossRefGoogle Scholar
  16. Iribarne O, Botto F, Martinetto P, Gutierrez JL (2000) The role of the SW Atlantic burrowing crab in sequestering debris. Mar Pollut Bull 40:1057–1062CrossRefGoogle Scholar
  17. Iribarne O, Martinetto P, Schwindt E, Botto F, Bortolus A, García Borboroglu P (2003) Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. J Exp Mar Biol Ecol 296:167–182. doi:10.1016/S0022-0981(03)00318-6CrossRefGoogle Scholar
  18. Jones MB, Simons MJ (1982) Habitat preferences of two estuarine burrowing crabs Helice crassa Dana (Grapsidae) and Macrophthalmus hirtipes (Jacquinot) (Ocypodidae). J Exp Mar Biol Ecol 56:49–62CrossRefGoogle Scholar
  19. Juanes F, Smith LD (1995) The ecological consequences of limb damage and loss in decapod crustacean: a review and prospectus. J Exp Mar Biol Ecol 193:197–223CrossRefGoogle Scholar
  20. Kurihara Y, Hosada T, Takeda S (1989) Factors affecting the burrowing behavior of Helice tridens (Grapsidae) and Macrophthalmus japonicus (Ocypodidae) in an estuary of northeast Japan. Mar Biol 101:153–157CrossRefGoogle Scholar
  21. Lenihan HS, Micheli F (2001) Soft-sediment communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Inc., USA, pp 253–287Google Scholar
  22. Levin LA (1981) Dispersion, feeding behavior and competition in two spionid polychaetes. J Mar Res 39:99–117Google Scholar
  23. Lewin R (1986) Supply-side ecology. Science 234:25–27CrossRefGoogle Scholar
  24. Luppi TA (1999) La coexistencia de dos especies de cangrejos en el ecosistema del cangrejal: estudio comparativo del asentamiento y el reclutamiento. Doctoral Thesis, Universidad Nacional de Mar del Plata, ArgentinaGoogle Scholar
  25. Martinetto P (2006) Efecto del cangrejo cavador Chasmagnathus granulatus en las interacciones biológicas y el uso de hábitat de cangrejos y peces. Doctoral Thesis, Universidad Nacional de Mar del Plata, ArgentinaGoogle Scholar
  26. Martinetto P, Iribarne O, Palomo G (2005) Effect of fish predation on intertidal benthic fauna is modified by crab bioturbation. J Exp Mar Biol Ecol 318:71–84CrossRefGoogle Scholar
  27. Morin PJ (1999) Community ecology. Blackwell, USAGoogle Scholar
  28. Palomo G, Martinetto P, Bruschetti M, Iribarne O (2003) Evidencias de redundancia funcional entre los cangrejos Chasmagnathus granulata y Cyrtograpsus angulatus. V Jornadas Nacionales de Ciencias del Mar, Mar del PlataGoogle Scholar
  29. Palomo G, Martinetto P, Bruschetti M, Iribarne O, Bruzzone O (2007) Feeding and burrowing behavior of a crab species affected by competitive displacement: similar traits means similar functional effects? Mar Ecol Prog Ser (in press)Google Scholar
  30. Peterson CH (1977) Competitive organization of the soft bottom macrobenthic communities of southern California lagoon. Mar Biol 43:343–359CrossRefGoogle Scholar
  31. Peterson CH (1979) Predation, competitive exclusion, and diversity in the soft-sediment benthic communities of estuaries and lagoons. In: Livingston RJ (ed) Ecological processes in coastal and marine systems. Plenum, New York, pp 233–264CrossRefGoogle Scholar
  32. Peterson CH (1991) Intertidal zonation of marine invertebrates in sand and mud. Am Sci 79:236–249Google Scholar
  33. Peterson CH (1992) Competition for food and its community-level implications. Benthos Res 42:1–11CrossRefGoogle Scholar
  34. Peterson CH, Andre SV (1980) An experimental analysis of interspecific competition among marine filter feeders in a soft-sediment environment. Ecology 61:129–139CrossRefGoogle Scholar
  35. Ringold P (1979) Burrowing, root mat density, and the distribution of fiddler crabs in the Eastern United States. J Exp Mar Biol Ecol 36:11–21CrossRefGoogle Scholar
  36. Ringold PL (1978) Distribution of fiddler crabs in relation to the root content of the substrate. Am Zool 18:599Google Scholar
  37. Schwindt E, Bortolus A, Iribarne OO (2001) Invasion of a reef-builder polychaete: direct and indirect impacts on the native benthic community structure. Biol Inv 3:137–149CrossRefGoogle Scholar
  38. Shaw RG, Mitchell-Olds T (1993) ANOVA for unbalanced data: an overview. Ecology 74:1638–1645CrossRefGoogle Scholar
  39. Spivak ED (1997a) Los crustáceos decápodos del Atlántico Sudoccidental (25–55S): distribución y ciclos de vida. Invest Mar Valparaíso 25:105–120Google Scholar
  40. Spivak ED (1997b) Cangrejos estuariales del Atlántico Sudoccidental (25–41S) (Crustacea: Decapada: Brachyura). Invest Mar Valparaíso 25:105–120Google Scholar
  41. Spivak ED, Politis MA (1989) High incidence of limb autotomy in a crab population from a coastal lagoon in the province of Buenos Aires, Argentina. Can J Zool 67:1976–1985CrossRefGoogle Scholar
  42. Spivak ED, Anger K, Luppi T, Bas C, Ismael D (1994) Distribution and habitat preferences of two grapsid crab species in Mar Chiquita Lagoon (Province of Buenos Aires, Argentina). Helgol Meeresunters 48:59–78CrossRefGoogle Scholar
  43. Svensson BG, Tallmark B, Petersson E (2000) Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat Insects 22:81–98CrossRefGoogle Scholar
  44. Underwood AJ (1997) Experiments in ecology. Cambridge University Press, UKGoogle Scholar
  45. Willason SW (1981) Factors influencing the distribution and coexistence of Pachygrapsus crassipes and Hemigrapsus oregonensis (Decapoda: Grapsidae) in a California salt marsh. Mar Biol 64:125– 133CrossRefGoogle Scholar
  46. Wilson WH (1980) A laboratory investigation of the effect of a terebellid polychaete on the survivorship of nereid polychaete larvae. J Exp Mar Biol Ecol 46:73–80CrossRefGoogle Scholar
  47. Wilson WH (1991) Competition and predation in marine soft-sediment communities. Annu Rev Ecol Syst 21:221–241CrossRefGoogle Scholar
  48. Woodin A (1974) Polychaete abundance patterns in a marine soft-sediment environment: the importance of biological interactions. Ecol Monogr 44:171–187CrossRefGoogle Scholar
  49. Woodin A (1976) Adult-larval interaction in dense infaunal assemblages: patterns of abundance. J Mar Res 34:25–41Google Scholar
  50. Zar JH (1999) Biostatistical analysis. Prentice-Hall. Englewood CliffGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Paulina Martinetto
    • 1
    • 2
    Email author
  • Macarena Valiñas
    • 1
    • 2
  • Gabriela Palomo
    • 2
    • 3
  • Oscar Iribarne
    • 1
    • 2
  1. 1.Lab. de Ecología, Dpto. de Biología (FCEyN)Universidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”Buenos AiresArgentina

Personalised recommendations