Marine Biology

, Volume 151, Issue 4, pp 1385–1396 | Cite as

Ecological success of the cladoceran Penilia avirostris in the marine environment: feeding performance, gross growth efficiencies and life history

  • Dacha AtienzaEmail author
  • Albert Calbet
  • Enric Saiz
  • Rubens M. Lopes
Research Article


Marine cladocerans are important contributors to the zooplankton community of tropical and temperate coastal ecosystems during the warmer months, when they show explosive population growth. Despite this fact, little information is available on their ecology compared with the extensive studies on their freshwater relatives. The main objective of this study was to determine the in situ feeding and growth rates, and life history parameters of Penilia avirostris in São Sebastião Bay (Brazil) during austral summer 2004, as a premise to understand the advantages of this cladoceran in oligotrophic waters. Culture development experiments, monitored for a period of 12 days, showed that maximum juvenile release occurred after 2 days, and that the development duration of a complete cohort was around 9 days. From bottle incubation grazing experiments, significant ingestion rates upon flagellates, ciliates, dinoflagellates and diatoms were detected. Flagellates were the most important contributors to P. avirostris diet (ca. 80%). P. avirostris ingested between 28 and 97% of its own carbon biomass per day (daily ration) and individual growth rates of this marine cladoceran (0.10–0.24 d−1) increased with prey availability. The combination of ingestion rates of natural prey and growth rates provided gross growth efficiencies (GGE) of 15–53%, on a carbon basis. Our results suggest that P. avirostris has similar GGE to copepods, although at low food conditions the values for the marine cladocerans seems slightly higher. However, this characteristic alone does not explain the explosive growth and community dominance shown by P. avirostris. Therefore, other traits related to the reproductive biology of the species, such as short generation time, parthenogenetic reproduction, and continuous somatic growth, seems to be mostly responsible for the success of P. avirostris in many marine ecosystems during their seasonal occurrence.


Dinoflagellate Synechococcus Brood Size Somatic Growth Life History Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by a PhD fellowship from the Spanish Government to D.A., Spanish CICYT projects REN2001-1693 and CTM2004-02575/MAR, and the Brazilian funding agency CNPq (grant 308055/2004-7). The authors also wish to thank scientists and technicians from the Centro de Biologia Marinha (CEBIMar/USP) and A. Crete for their help during the course of the experiments. Three anonymous reviewers highly contributed to improve the final quality of the article.


  1. Alcaraz M (1977) Cladóceros y ostrácodos de los alrededores del Estrecho de Gibraltar en junio-julio de 1972. Res Exp Cient B/O Cornide 6:41–63Google Scholar
  2. Alcaraz M (1981) Ciclo anual de los cladóceros y ostrácodos planctónicos en la plataforma continental de Vizcaya (Punta Endata). Inv Pesq 45(1):3–16Google Scholar
  3. Atienza D, Saiz E, Calbet A (2006a) Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Mar Ecol Prog Ser 315:211–220CrossRefGoogle Scholar
  4. Atienza D, Calbet A, Saiz E, Alcaraz M, Trepat I (2006b) Trophic impact, metabolism, and biogeochemical role of the marine cladoceran Penilia avirostris and the co-dominant copepod Oithona nana in NW Mediterranean coastal waters. Mar Biol 150:211–235CrossRefGoogle Scholar
  5. Børsheim KY, Bratbak G (1987) Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar Ecol Prog Ser 36:171–175CrossRefGoogle Scholar
  6. Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol 35:65–78CrossRefGoogle Scholar
  7. Bunker AJ, Hirst AG (2004) Fecundity of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature and body weight. Mar Ecol Prog Ser 279:161–181CrossRefGoogle Scholar
  8. Calbet A, Garrido S, Saiz E., Alcaraz M, Duarte M (2001) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J Plankton Res 23(3):319–331CrossRefGoogle Scholar
  9. Castro BM, Miranda LB, Silva LS, Processos físicos-hidrografia, circulação e transporte. In: Pires-Vanin AMS (ed), Oceanografia de um ecosistema tropical: Plataforma de São Sebastião, SP. EDUSP, São Paolo (in press)Google Scholar
  10. Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 23(5):537–547CrossRefGoogle Scholar
  11. Castellani C, Robinson C, Smith T, Lampitt RS (2005) Temperature affects respiration rate of Oithona similis. Mar Ecol Prog Ser 285:129–135CrossRefGoogle Scholar
  12. Della Croce N (1964) Distribuzione e biologia del cladocero marino Penilia avirostris Dana. Bull Inst Océanogr Monaco 62(1301):1–18Google Scholar
  13. DeMott WR, Gulati RD Donk E van (2001) Effects of dietary phosphorus deficiency on the abundance, phosphorus balance, and growth of Daphnia cucullata in three hypereutrophic Dutch lakes. Limnol Oceanogr 46(8):1871–1883CrossRefGoogle Scholar
  14. DeMott WR (2003) Implications of element deficits for zooplankton growth. Hydrobiologia 491:177–184CrossRefGoogle Scholar
  15. Egloff DA, Fofonoff PW, Onbé T (1997) Reproductive biology of marine cladocerans. Adv Mar Biol 31:79–167CrossRefGoogle Scholar
  16. Fernández de Puelles ML, Pinot JM, Valencia J (2003) Seasonal and interannual variability of zooplankton community in water off Mallorca island (Balearic sea, Western Mediterranean): 1994–1999. Oceanol Acta 26:673–686CrossRefGoogle Scholar
  17. Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17(6):805–815CrossRefGoogle Scholar
  18. Gore MA (1980) Feeding experiments on Penilia avirostris Dana (Cladocera: Crustacea). J Exp Mar Biol Ecol 44:253–260CrossRefGoogle Scholar
  19. Hirst AG, Bunker AJ (2003) Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol Oceanogr 48(5):1988–2010CrossRefGoogle Scholar
  20. Huntley ME, Lopez MDG (1992) Temperature-dependent production of marine copepods: a global synthesis. Am Nat 140(2):201–242CrossRefGoogle Scholar
  21. Johns DG, Edwards M, Greve W, John AWGS (2005) Increasing prevalence of the marine cladoceran Penilia avirostris (Dana, 1852) in the North Sea. Helg Mar Res 59:214–218CrossRefGoogle Scholar
  22. Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26(6):589–603CrossRefGoogle Scholar
  23. Katechakis A, Stibor H (2004) Feeding selectivities of the marine cladocerans Penilia avirostris, Podon intermedius and Evadne nordmanni. Mar Biol 145:529–539CrossRefGoogle Scholar
  24. Kim SW, Onbé T, Yoon YH (1989) Feeding habits of marine cladocerans in the Inland Sea of Japan. Mar Biol 100:313–318CrossRefGoogle Scholar
  25. Kiørboe T, Møhlenberg F, Hamburger K (1985) Bioenergetics of the planktonic copepod Acartia tonsa; relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar Ecol Prog Ser 26:85–97CrossRefGoogle Scholar
  26. Lipej L, Mozetic P Turk V, Malej A (1997) The trophic role of the marine cladoceran Penilia avirostris in the Gulf of Trieste. Hydrobiologia 360:197–203CrossRefGoogle Scholar
  27. Marazzo A, Valentin JL (2003) Penilia avirostris (Crustacea, Ctenopoda) in a tropical bay: variations in density and aspects of reproduction. Acta Oecol 24:S251–S257CrossRefGoogle Scholar
  28. Marazzo A, Valentin JL (2004) Reproductive aspects of marine cladocerans Penilia avirostris and Pseudoevadne tergestina (Crustacea, Branchiopoda) in the outer part of Guanabara Bay, Brasil. Braz J Biol 64:543–549CrossRefGoogle Scholar
  29. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579CrossRefGoogle Scholar
  30. Mullin MM, Onbé T (1992) Diel reproduction and vertical distributions of the marine cladocerans, Evadne tergestina and Penilia avirostris, in contrasting coastal environments. J Plankton Res 14(1):41–59CrossRefGoogle Scholar
  31. Onbé T, Ikeda T (1995) Marine cladocerans in Toyama Bay, southern Japan Sea: seasonal occurrence and day–night vertical distributions. J Plankton Res 17(3):595–609CrossRefGoogle Scholar
  32. Onbé T, Nagasawa MT (1996) Summer distribution of marine cladocerans in Otsuchi Bay, northeastern Honshu, Japan. Bull Plankton Soc Jpn 43(2):121–131Google Scholar
  33. Paffenhöfer GA (1976) Feeding, growth, and food conversion of the marine planktonic copepod Calanus helgolandicus. Limnol Oceanogr 21:39–50CrossRefGoogle Scholar
  34. Paffenhöfer GA (1983) Vertical zooplankton distribution on the northeastern Florida shelf and its relation to temperature and food abundance. J Plankton Res 5(1):15–33CrossRefGoogle Scholar
  35. Paffenhöfer GA, Orcutt JD (1986) Feeding, growth and food conversion of the marine cladoceran Penilia avirostris. J Plankton Res 8(4):741–754CrossRefGoogle Scholar
  36. Parson TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, New York, p 173Google Scholar
  37. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25(5):943–948CrossRefGoogle Scholar
  38. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  39. Resgalla C, Montú M (1993) Cladóceros marinhos da plataforma continental do Rio Grande do Sul-Brasil. Nauplius 1:63–79Google Scholar
  40. Rey-Rassat C, Irigoien X, Harris R, Head R, Carlotti F (2002) Growth and development of Calanus helgolandicus reared in the laboratory. Mar Ecol Prog Ser 238:125–138CrossRefGoogle Scholar
  41. Rose K, Roff JC, Hopcroft RR (2004) Production of Penilia avirostris in Kingston Harbour, Jamaica. J Plankton Res 26(3):1–11Google Scholar
  42. Saiz E, Alcaraz M, Paffenhöfer GA (1992) Effects of small-scale turbulence on feeding rate and gross-growth efficiency of three Acartia species (Copepoda: Calanoida). J Plankton Res 14(8):1085–1097CrossRefGoogle Scholar
  43. Straile D (1997) Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator–prey ratio, and taxonomic group. Limnol Oceanogr 42(6):1375–1385CrossRefGoogle Scholar
  44. Tang KW, Chen CC, Wong CK (1995) Distribution and biology of marine cladocerans in the coastal waters of southern China. Hydrobiologia 507:99–107CrossRefGoogle Scholar
  45. Threlkeld ST (1979) Estimating cladoceran birth rates: The importance of egg mortality and the egg age distribution. Limnol Oceanogr 24(4):601–612CrossRefGoogle Scholar
  46. Turner JT, Tester PA, Ferguson RL (1988) The marine cladoceran Penilia avirostris and the “microbial loop” of pelagic food webs. Limnol Oceanogr 33(2):245–255CrossRefGoogle Scholar
  47. Urabe J (1988) Effect of food conditions on the net production of Daphnia galeata: separate assessment of growth and reproduction. Bull Plankton Soc Jpn 35(2):159–174Google Scholar
  48. Urabe J, Watanabe Y (1992) Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnol Ocaanogr 37:244–251CrossRefGoogle Scholar
  49. Uye S (1982) Length-weight relationships of important zooplankton from the Inland Sea of Japan. J Oceanogr Soc Jpn 38:149–158CrossRefGoogle Scholar
  50. Valentin JL, Marazzo A (2003) Modelling the population dynamics of Penilia avirostris (Branquiopoda, Ctenopoda) in a tropical bay. Acta Oecologica 24:S369–S376CrossRefGoogle Scholar
  51. Vega-Pérez LA (1993) Zooplancton. In: Estrutura e função do ecossistema da plataforma continental do Atlântico Sul brasileiro. Publicações Especiais do Instituto Oceanográfico da Universidade de São Paulo 10:1–245Google Scholar
  52. Wong CK, Ji C, Nip THM (2004) Diet cycle in the percentage abundance of parthenogenetic females with embryos of different developmental stages in four species of marine cladocerans. J Plankton Res 26(9):1095–1103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Dacha Atienza
    • 1
    Email author
  • Albert Calbet
    • 1
  • Enric Saiz
    • 1
  • Rubens M. Lopes
    • 2
  1. 1.Institut de Ciències del Mar (CSIC)Barcelona, CataloniaSpain
  2. 2.Instituto OceanográficoUniversidade de São PauloSão Paulo (SP)Brazil

Personalised recommendations