Marine Biology

, Volume 151, Issue 4, pp 1261–1274 | Cite as

Feeding of Clausocalanids (Calanoida, Copepoda) on naturally occurring particles in the northern Gulf of Aqaba (Red Sea)

  • A. CornilsEmail author
  • S. B. Schnack-Schiel
  • M. Böer
  • M. Graeve
  • U. Struck
  • T. Al-Najjar
  • C. Richter
Research Article


A total of 12 feeding experiments were conducted in the northern Gulf of Aqaba during spring (March/April) and autumn (September/October) 2002 at the Marine Science Station (MSS) in Aqaba. Females of three species of clausocalanids were selected: Clausocalanusfarrani, C. furcatus and Ctenocalanus vanus. Natural occurring particle (NOP) larger than 5 μm were investigated as food source. The ambient chlorophyll a concentration at sampling depth (∼70 m) ranged between 0.15 and 1.00 μg chl a l−1 and NOP concentrations ranged between 1.78 and 14.0 × 103 cells l−1 during the sampling periods. The division of particles into five size classes (5–10, 10–20, 20–50, 50–100 and >100 μm) revealed that most of the particles were found in the size classes below 50 μm (81–98%), while most of the natural occurring carbon (NOC) was concentrated in the size classes larger than 20 μm (70–95%). Ingestion rates were food density dependent rather than size dependent ranging between 0.02 and 1.65 × 103 NOP ind−1 day−1 and 0.01 and 0.41 μg NOC ind−1 day−1, respectively, equivalent to a body carbon (BC) uptake between 0.4 and 51.8% BC day−1. The share of the size classes to the total ingestion resembled in most cases the size class composition of the natural particle community.


Ingestion Rate Dinoflagellate Calanoid Copepod Prochlorococcus Body Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the director of the Marine Science Station (MSS) in Aqaba, Dr. M. Badran, and the staff for their kind welcome and their help in sampling and analysis, especially Ehab Eid, Maysara Emor, Khaled Al-Tarabeen, Hassan Abu-Taleb and the late Said H. Sirhan. Further we thank Eva-Maria Zetsche and Christian Undeutsch for their assistence in conducting the experiments, Janna Peters for the help in fatty acid analysis, and Ute Jacob for help in the interpretations of the stable isotope data. We also thank two anonymous referees for their comments and suggestions.


  1. Al-Najjar T (2000) The seasonal dynamics and grazing control of phyto- and mesozooplankton in the northern Gulf of Aqaba. PhD thesis, University of Bremen, Germany, pp 121Google Scholar
  2. Almeida Prado-Por MS (1983) The diversity and dynamics of Calanoida (Copepoda) in the northern Gulf of Elat (Aqaba), Red Sea. Oceanol Acta 6:139–145Google Scholar
  3. Almeida Prado-Por MS (1985) Distribution of the calanoid Copepoda along the Gulf of Elat (Aqaba), Red Sea. Rapp Comm Int Mer Médit 29:249–252Google Scholar
  4. Almeida Prado-Por MS (1990) A diel cycle of vertical distribution of the Calanoidea (Crustacea: Copepoda) in the northern Gulf of Aqaba (Elat). Bull Inst Océanogr Monaco 7:109–116Google Scholar
  5. Atkinson A, Shreeve RS, Pakhomov EA, Priddle J, Blight SP, Ward P (1996) Zooplankton response to phytoplankton bloom near South Georgia, Antarctica. Mar Ecol Prog Ser 144:195–210CrossRefGoogle Scholar
  6. Ayukai T (1990) Fecal pellet production by two species of planktonic calanoid copepods fed on maturally occurring particles. Bull Plankton Soc Jpn 8:167–169Google Scholar
  7. Batten SD, Fileman ES, Halvorsen E (2001) The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Progr Oceanogr 51:385–398CrossRefGoogle Scholar
  8. Boyd CM (1976) Selection of particle sizes by filter-feeding copepods: a plea for reason. Limnol Oceanogr 21:175–180CrossRefGoogle Scholar
  9. Brandt K, Apstein C (1964) Nordisches plankton. VII. Protozoa. Asher & Co, AmsterdamGoogle Scholar
  10. Broglio E, Saiz E, Calbet A, Trepat I, Alcaraz M (2004) Trophic impact and prey selection by crustacean zooplankton on the microbial communities of an oligotrophic coastal area (NW Mediterranean Sea). Aquat Microb Ecol 35:65–78CrossRefGoogle Scholar
  11. Calbet A, Landry MR (1999) Mesozooplankton influences on the microbial food web: direct and indirect trophic interactions in the oligotrophic open ocean. Limnol Oceanogr 44:1370–1380CrossRefGoogle Scholar
  12. Campbell L, Vaulot D (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Res 40:2043–2060CrossRefGoogle Scholar
  13. Chesson J (1983) The estimation and analysis of preference and its relationship to foraging models. Ecology 64:1297–1304CrossRefGoogle Scholar
  14. Cornils A, Schnack-Schiel SB, Al-Najjar T, Badran MI, Rasheed M, Manasreh R, Richter C (2007) The seasonal cycle of the epipelagic mesozooplankton in the northern Gulf of Aqaba (Red Sea). J Mar Syst (in press)Google Scholar
  15. Cowles TJ (1979) The feeding response of copepods from the Peru upwelling system: food size selection. J Mar Res 37:601–622Google Scholar
  16. Dagg MJ, Frost BW, Newton J (1998) Diel vertical migration and feeding in adult female Calanus pacificus, Metridia lucens and Pseudocalanus newmani during a spring bloom in Dabob Bay, a fjord in Washington USA. J Mar Syst 15:503–509CrossRefGoogle Scholar
  17. Dagg MJ, Grill DW (1980) Natural feeding rates of Centropages typicus females in the New York Bight. Limnol Oceanogr 25:597–609CrossRefGoogle Scholar
  18. Drebes G (1974) Marines Phytoplankton. Eine Auswahl der Helgoländer Planktonalgen (Diatomeen, Peridineen). Georg Thieme, StuttgartGoogle Scholar
  19. Ehleringer JR, Rundel PW, Nagy KA (1986) Stable isotopes in physiological ecology and food web research. Trends Ecol Evol 1:42–45CrossRefGoogle Scholar
  20. Fischer L (2005) Der Einfluß der großen Meteorbank auf die Ernährungsbiologie und Verteilung dominanter Calanoida (Crustacea, Copepoda). Ber Polarforsch Meeresforsch 499:157Google Scholar
  21. Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815CrossRefGoogle Scholar
  22. Frost BW, Fleminger A (1968) A revision of the genus Clausocalanus (Copepoda: Calanoida) with remarks on distributional patterns in diagnostic characters. Bull Scripps Inst Oceanogr Univ Cal 12:1–235Google Scholar
  23. Fry B, Quinones RB (1994) Biomass spectra and stable isotope indicators of trophic level in zooplankton of the northwest Atlantic. Mar Ecol Prog Ser 112:201–204CrossRefGoogle Scholar
  24. Gaudy R (1972) Contribution a la connaissance du cycle biologique des copépodes du Golfe de Marseille 2. Étude du cycle biologique de quelques espéces caractéristique. Tethys 4:175–242Google Scholar
  25. Gifford DJ (1991) The protozoen–metazoen trophic link in pelagic ecosystems. J Protozool 38:81–86CrossRefGoogle Scholar
  26. Hagen W (2000) Lipids. In: Harris R, Wiebe P, Lenz J, Skjoldal HR, Huntley M (eds) ICES zooplankton methodological manual. Academic, San Diego, pp 113–119Google Scholar
  27. Halvorsen E, Hirst AG, Batten SD, Tande KS, Lampitt RS (2001) Diet and community grazing by copepods in an upwelled filament off the NW coast of Spain. Progr Oceanogr 51:399–421CrossRefGoogle Scholar
  28. Heron GA, Bowman TE (1971) Postnaupliar developmental stages of the copepod crustaceans Clausocalanus laticeps, C. brevipes and Ctenocalanus citer (Calanoida: Pseudocalanidae). In: LLano GA, Wallen JE (eds) Biology of the Antarctic Seas, 4. Ant Res Ser, Washington, pp 141–165Google Scholar
  29. Hopcroft RR, Roff JC, Lombard D (1998) Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar Biol 130:593–604CrossRefGoogle Scholar
  30. Huntley M (1981) Nonselective, nonsaturated feeding by three calanid copepod species in the Labrador Sea. Limnol Oceanogr 26:831–842CrossRefGoogle Scholar
  31. Hure J, Scotto di Carlo B (1970) Distribuzione e frequenza delle specie del genere Clausocalanus Giesbrecht, 1888 (Copepoda: Calanoida) nel Golfo di Napoli e nell’Adriatico meridionale. Pubbl Staz Zool Napoli 38:289–304Google Scholar
  32. Kattner G, Fricke HSG (1986) Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361:263–268CrossRefGoogle Scholar
  33. Kattner G, Graeve M, Hagen W (1994) Ontogenetic and seasonal changes in lipid and fatty acid/alcohol composition of dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar Biol 118:637–644CrossRefGoogle Scholar
  34. Kimor B, Golandsky B (1977) Microplankton of the Gulf of Elat: Aspects of seasonal and bathymetric distribution. Mar Biol 42:55–67CrossRefGoogle Scholar
  35. Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195CrossRefGoogle Scholar
  36. Kleppel GS, Frazel D, Pieper RE, Holliday DV (1988) Natural diets of zooplankton off southern California. Mar Ecol Prog Ser 49:231–241CrossRefGoogle Scholar
  37. Landry MR, Peterson WK, Fagerness VL (1994) Mesozooplankton grazing in the Southern California Bight. I. Population abundances and gut pigment contents. Mar Ecol Prog Ser 115:55–71CrossRefGoogle Scholar
  38. Lee RF, Hirota J (1973) Wax esters in tropical zooplankton and nekton and the geographical distribution of wax esters in marine copepods. Limnol Oceanogr 18:227–239CrossRefGoogle Scholar
  39. Levanon-Spanier I, Padan E, Reiss Z (1979) Primary production in a desert—enclosed sea—the Gulf of Elat (Aqaba), Red Sea. Deep-Sea Res 26:673–685CrossRefGoogle Scholar
  40. Levinsen H, Turner JT, Nielsen TG, Hansen BW (2000) On the trophic coupling between protists and copepods in arctic marine ecosystems. Mar Ecol Prog Ser 204:65–77CrossRefGoogle Scholar
  41. Lindell D, Post AF (1995) Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol Oceanogr 40:1130–1141CrossRefGoogle Scholar
  42. Lozan JL, Kausch H (1998) Angewandte Statistik für Naturwissenschaftler. Pareys Studientexte 74. Parey Buchverlag, Berlin. 2. Aufl., 287ppGoogle Scholar
  43. Mariotti A (1984) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687CrossRefGoogle Scholar
  44. Massuti M, Margalef R (1950) Introduccion al estudio del Plancton marino. Patronata Juan de la Cierva de Investigacion tecnica (C. S. DE I. C.)Google Scholar
  45. Mayzaud O, Mayzaud P, Bigne C, de la Grohan P (1984) Diel changes in the particulate environment, feeding activity and digestive enzyme concentration in neritic zooplankton. J Exp Mar Biol Ecol 84:15–35CrossRefGoogle Scholar
  46. Mazzocchi MG, Paffenhöffer GA (1998) First observations on the biology of Clausocalanus furcatus (Copepoda, Calanoida). J Plankton Res 20:331–342CrossRefGoogle Scholar
  47. Mazzocchi MG, Paffenhöfer GA (1999) Swimming and feeding behaviour of the planktonic copepod Clausocalanus furcatus. J Plankton Res 21:1501–1518CrossRefGoogle Scholar
  48. Mazzocchi MG, Christou ED, Fragopolou N, Siokou-Frangou I (1997) Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean): I. General aspects. Oceanol Acta 20:521–535Google Scholar
  49. Nejstgaard JC, Hygum BH, Naustvoll LJ, Båmstedt U (2001a) Zooplankton growth, diet and reproductive success compared in simultaneous diatom- and flagellate-microzooplankton-dominated plankton blooms. Mar Ecol Prog Ser 221:77–91CrossRefGoogle Scholar
  50. Nejstgaard JC, Naustvoll LJ, Sazhin A (2001b) Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Mar Ecol Prog Ser 221:59–75CrossRefGoogle Scholar
  51. Ohman MD (1990) The demographic benefits of diel vertical migration by zooplankton. Ecol Monogr 60:257–281CrossRefGoogle Scholar
  52. Pankow H (1990) Ostseealgenflora. Gustav Fischer, JenaGoogle Scholar
  53. Paffenhöfer GA, Knowles SC (1980) Omnivorousness in marine planktonic copepods. J Plankton Res 2:355–365 CrossRefGoogle Scholar
  54. Peterson WT, Painting SJ, Hutchings L (1990) Diel variations in gut pigment content, diel vertical migration and estimates of grazing impact for copepods in the southern Benguela upwelling region in October. J Plankton Res 12:259–281CrossRefGoogle Scholar
  55. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  56. Poulet SA (1973) Grazing of Pseudocalanus minutus on naturally occurring particulate matter. Limnol Oceanogr 18:564–573CrossRefGoogle Scholar
  57. Poulet SA (1974) Seasonal grazing of Pseudocalanus minutus on particles. Mar Biol 25:109–123CrossRefGoogle Scholar
  58. Poulet SA (1976) Feeding of Pseudocalanus minutus on living and non-living particles. Mar Biol 34:117–125CrossRefGoogle Scholar
  59. Poulet SA (1978) Comparison between five coexisting species of marine copepods feeding on naturally particulate matter. Limnol Oceanogr 23:1126–1143CrossRefGoogle Scholar
  60. Reiss Z, Hottinger L (1984) The Gulf of Aqaba. ecological micropaleontology (ecologial studies 50). Springer, Berlin Heidelberg New YorkGoogle Scholar
  61. Schmidt K, Atkinson A, Stübing D, McClelland JW, Montoya JP, Voss M (2003) Trophic relationships among Southern Ocean copepods and krill: some uses and limitations of a stable isotope approach. Limnol Oceanogr 48:277–289CrossRefGoogle Scholar
  62. Schulz K (1986) Aspects of calanoid copepod distribution in the upper 200 m of the central and southern Sargasso Sea in spring 1979. Syllogeus 58:459–466Google Scholar
  63. Shmeleva AA, Kovalev AV (1974) Cycles biologique des copepodes (Crustacea) de la mer Adriatique. Bolletino di Pesca Piscicoltura e Idrobiologia 29:49–70Google Scholar
  64. Smetacek V (1975) Die Sukzession des Phytoplanktons in der westlichen Kieler Bucht. PhD Thesis, University of Kiel, GermanyGoogle Scholar
  65. Sommer U. (2000) Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak top-down control. Mar Ecol Prog Ser 197:19–25CrossRefGoogle Scholar
  66. Sommer U, Berninger UG, Böttger-Schnack R, Cornils A, Hagen W, Hansen T, Al-Najjar T, Post AF, Schnack-Schiel SB, Stibor H, Stübing D, Wickham S (2002) Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Mar Ecol Prog Ser 239:251–261CrossRefGoogle Scholar
  67. Stoecker DK, McDowell Capuzzo J (1990) Predation on Protozoa: its importance to zooplankton. J Plankton Res 23:891–908CrossRefGoogle Scholar
  68. Tomas CR (1993) Marine phytoplankton—a guide to naked flagellates and coccolithophorids. Academic, San DiegoGoogle Scholar
  69. Tomas CR (1995) Identifying marine diatoms and dinoflagellates. Academic, San DiegoGoogle Scholar
  70. Turner JT (1991) Zooplankton feeding ecology: do co-occuring copepods compete for the same food? Rev Aquat Sci 5:101–195Google Scholar
  71. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplanktonmethodik. Mitt int Ver theor angew Limnol 9:1–38Google Scholar
  72. Uye SI, Kasahara S (1983) Grazing of various developmental stages of Pseudodiaptomus marinus (Copepoda: Calanoida) on natural occurring particles. Bull Plankton Soc Jpn 30:147–158Google Scholar
  73. Webber MK, Roff JC (1995) Annual structure of the copepod community and its associated pelagic environment off Discovery Bay, Jamaica. Mar Biol 123:467–479CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Cornils
    • 1
    • 2
    Email author
  • S. B. Schnack-Schiel
    • 1
  • M. Böer
    • 1
  • M. Graeve
    • 1
  • U. Struck
    • 4
  • T. Al-Najjar
    • 3
  • C. Richter
    • 2
  1. 1.Alfred-Wegener-Institut für Polar-und MeeresforschungBremerhavenGermany
  2. 2.Zentrum für Marine TropenökologieBremenGermany
  3. 3.Marine Science StationAqabaJordan
  4. 4.GeoBio-Center at Ludwig-Maximilians UniversityMünchenGermany

Personalised recommendations