Marine Biology

, Volume 151, Issue 4, pp 1275–1286 | Cite as

Population structure and historical demography of the thorny skate (Amblyraja radiata, Rajidae) in the North Atlantic

  • Malia ChevolotEmail author
  • Peter H. J. Wolfs
  • Jónbjörn Pálsson
  • Adriaan D. Rijnsdorp
  • Wytze T. Stam
  • Jeanine L. Olsen
Research Article


Population genetic structure of the thorny skate (Amblyraja radiata) was surveyed in >300 individuals sampled from Newfoundland, Iceland, Norway, the Kattegat and the central North Sea. A 290-bp fragment of the mt cytochrome-b gene was first screened by SSCP. Sequences of SSCP haplotypes revealed 34 haplotypes, 14 of which were unique to Iceland, 3 to Newfoundland, 1 to Norway and 3 to the Kattegat. The global FST was weak but significant. Removal of the two Kattegat locations, which were the most differentiated, resulted in no significant genetic differentiation. Haplotype diversity was high and evenly distributed across the entire Atlantic (h = 0.8) with the exception of the North Sea (h = 0.48). Statistical parsimony revealed a star-like genealogy with a central widespread haplotype. A subsequent nested clade analysis led to the inference of contiguous expansion with evidence for long distance dispersal between Newfoundland and Iceland. Historical demographic analysis showed that thorny skates have undergone exponential population expansion that started between 1.1 million and 690,000 years ago; and that the Last Glacial Maximum apparently had little effect. These results strongly differ from those of a parallel study of the thornback ray (Raja clavata) in which clear structure and former refugial areas could be identified. Although both species have similar life history traits and overlapping ranges, the continental shelf edge apparently does not present a barrier to migration in A. radiata, as it does for R. clavata.


Amblyraja radiata Thorny skate Rajidae Elasmobranchs Cytochrome b Mitochondrial DNA Population structure Iceland Atlantic 



We thank Henk Heessen from the RIVO (IBTS survey, The Netherlands), David W. Kulka, Todd Inkpen and Joe Firth from the Department of Fisheries and Oceans of the Canadian government (DFO, Fall survey), and crew members from the different research vessels for their help in the sampling; and J.A. Coyer and G. Hoarau for their useful comments on previous versions of this manuscript. This research was supported by NWO-PRIORITEIT programma SUSUSE, Project Nr. 885-10-311.


  1. Addison JA, Hart MW (2005) Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis). Evolution 59:532–543PubMedGoogle Scholar
  2. Avise JC (2000) Phylogeography: the history and formation of species, 1st edn. Harvard University Press, CambridgeGoogle Scholar
  3. Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Ann Rev Ecol Syst 18:489–522CrossRefGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) Genetix, logiciel sous windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, MontpellierGoogle Scholar
  5. Bingham RG, Hulton NRJ, Dugmore AJ (2003) Modelling the southern extent of the last Icelandic ice-sheet. J Quat Sci 18:169–181CrossRefGoogle Scholar
  6. Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift-equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627PubMedGoogle Scholar
  7. Brander K (1981) Disappearance of common skate Raia batis from Irish Sea. Nature 290:48–49CrossRefGoogle Scholar
  8. Bremer JRA, Vinãs J, Mejuto J, Ely B, Pla C (2005) Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Mol Phylogenet Evol 36:169–187CrossRefGoogle Scholar
  9. Chevolot M, Ellis JR, Hoarau G, Rijnsdorp AD, Stam WT, Olsen JL (2006a) Population structure of thornback ray (Raja clavata L.) in British waters. J Sea Res 56:305–316CrossRefGoogle Scholar
  10. Chevolot M, Hoarau G, Rijnsdorp AD, Stam WT, Olsen JL (2006b) Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol Ecol 15:3693–3705CrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659CrossRefGoogle Scholar
  12. Coyer JA, Peters AF, Hoarau G, Stam WT, Olsen JL (2002) Hybridization of the marine seaweeds, Fucus serratus and Fucus evanescens (Heterokontophyta: Phaeophyceae) in a 100-year-old zone of secondary contact. Proc R Soc Lond B Biol Sci 269:1829–1834CrossRefGoogle Scholar
  13. Coyer JA, Peters AF, Stam WT, Olsen JL (2003) Post-ice age recolonization and differentiation of Fucus serratus L. (Phaeophyceae; Fucaceae) populations in Northern Europe. Mol Ecol 12:1817–1829CrossRefGoogle Scholar
  14. Cunningham C, Collins T (1998) Beyond areas relationships: Extinction and recolonization in molecular marine biogeography. In: Schierwater B, Streit B, Wagener G, De Salle R (eds) Molecular ecology and evolution: approaches and applications. Birkhauser Verlag, Basel, pp. 297–321Google Scholar
  15. Dinter WP (2001) Biogeography of the OSPAR maritime area. A synopsis and synthesis of biogeographical patterns described for the North-East Atlantic. Federal Agency of Nature Conservation, BonnGoogle Scholar
  16. Donnelly P, Tavare S (1986) The ages of alleles and a coalescent. Adv App Probab 18:1–19CrossRefGoogle Scholar
  17. Dulvy NK, Metcalfe JD, Glanville J, Pawson MG, Reynolds JD (2000) Fishery stability, Local extinctions, and shifts in community structure in Skates. Conserv Biol 14:283–293CrossRefGoogle Scholar
  18. Durand JD, Tine M, Panfili J, Thiaw OT, Lae R (2005) Impact of glaciations and geographic distance on the genetic structure of a tropical estuarine fish, Ethmalosa fimbriata (Clupeidae, S. Bowdich, 1825). Mol Phylogenet Evol 36:277–287CrossRefGoogle Scholar
  19. Elphinstone MS, Hinten GN, Anderson MJ, Nock CJ (2003) An inexpensive and high-throughput procedure to extract and purify total genomic DNA for population studies. Mol Ecol Notes 3:317–320CrossRefGoogle Scholar
  20. Ely B, Vinãs J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19CrossRefGoogle Scholar
  21. Frenzel B, Pécsi M, Velichko AA (1992) Atlas of paleoclimates and paleoenvironments of the Northern hemisphere: Late Pleistocene-Holocene. Geographic research institute, Hungarian Academy of Sciences, BudapestGoogle Scholar
  22. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedPubMedCentralGoogle Scholar
  23. Govindarajan AF, Halanych KK, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222CrossRefGoogle Scholar
  24. Gysels ES, Hellemans B, Pampoulie C, Volckaert FAM (2004) Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea. Mol Ecol 13:403–417CrossRefGoogle Scholar
  25. Hall T (1999) Bioedit: a user-friendly biological sequence alignment and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  26. Heessen HJLE (2004). Development of elasmobranchs assessment, DELASS. DG fish study contract 99/055. Final report 605 pGoogle Scholar
  27. Heist EJ (1999) A review of population genetics in Sharks. Am Fish Soc Symp 23:161–168Google Scholar
  28. Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913CrossRefGoogle Scholar
  29. Hoarau G, Rijnsdorp AD, Van der Veer HW, Stam WT, Olsen JL (2002) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: Microsatellites revealed large-scale spatial and temporal homogeneity. Mol Ecol 11:1165–1176CrossRefGoogle Scholar
  30. Hoarau G, Piquet AMT, Van der Veer HW, Rijnsdorp AD, Stam W, Olsen JL (2004) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. J Sea Res 51:183–190CrossRefGoogle Scholar
  31. Hunter E, Buckley AA, Stewart C, Metcalfe JD (2005) Migratory behavior of the thornback ray, Raja clavata in the Southern North Sea. J Mar Biol Assoc UK 85:1095–1105CrossRefGoogle Scholar
  32. Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291CrossRefGoogle Scholar
  33. Jørgensen HBH, Hansen MM, Bekkevold D, Ruzzante DE, Loeschcke V (2005) Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol Ecol 14:3219–3234CrossRefGoogle Scholar
  34. Johansson G, Sosa PA, Snoeijs P (2003) Genetic variability and level of differentiation in North Sea and Baltic Sea populations of the green alga Cladophora rupestris. Mar Biol 142:1019–1027CrossRefGoogle Scholar
  35. Kohler NE, Turner PA (2001) Shark tagging: a review of conventional methods and studies. Environ Biol Fishes 60:191–223CrossRefGoogle Scholar
  36. Lawson GL, Rose GA (2000) Seasonal distribution and movements of coastal cod (Gadus morhua L.) in Placentia Bay, Newfoundland. Fish Res 49:61–75CrossRefGoogle Scholar
  37. Lescasse R. (1999) Recherche de variants génétiques dans le gène KCNQ1 codant un canal potassique, dans le cadre d’une étude épidémiologique: Mise au point de la SSCP fluorescente sur séquenceur. PhD Thesis, DEA thesis, University of Pierre and Marie Curie, ParisGoogle Scholar
  38. Luttikhuizen PC, Drent J, Baker AJ (2003) Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal. Mol Ecol 12:2215–2229CrossRefGoogle Scholar
  39. Martinez P, Gonzalez EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416CrossRefGoogle Scholar
  40. Metcalfe JD, Arnold GP (1997) Tracking fish with electronic tags. Nature 387:665–666CrossRefGoogle Scholar
  41. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  42. Nielsen EE, Hansen MM, Schmidt C, Meldrup D, Gronkjaer P (2001) Fisheries: population of origin of Atlantic cod. Nature 413:272CrossRefGoogle Scholar
  43. Nielsen EE, Nielsen PH, Meldrup D, Hansen MM (2004) Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol Ecol 13:585–595CrossRefGoogle Scholar
  44. Olsen JL, Stam WT, Coyer JA, Reusch TBH, Billingham M, Bostrom C, Calvert E, Christie H, Granger S, La Lumiere R, Milchakova N, Oudot-Le Secq MP, Procaccini G, Sanjabi B, Serrao E, Veldsink J, Widdicombe S, Wyllie-Echeverria S (2004) North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol Ecol 13:1923–1941CrossRefGoogle Scholar
  45. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770CrossRefGoogle Scholar
  46. Posada D, Crandall K (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefGoogle Scholar
  47. Posada D, Crandall KA, Templeton AR (2000) Geodis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488CrossRefGoogle Scholar
  48. Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol 14:793–803CrossRefGoogle Scholar
  49. Pybus OG, Rambaut A, Harvey PH (2000) An integrated framework for the inference of viral population history from reconstructed genealogies. Genetics 155:1429–1437PubMedPubMedCentralGoogle Scholar
  50. Queiroz N, Lima FP, Maia A, Ribeiro PA, Correia JP, Santos AA (2005) Movement of blue shark, Prionace glauca, in the north-east Atlantic based on mark-recapture data. J Mar Biol Assoc UK 85:1107–1112CrossRefGoogle Scholar
  51. Reusch TBH, Stam WT, Olsen JL (1999) Microsatellite loci in eelgrass Zostera marina reveal marked polymorphism within and among populations. Mol Ecol 8:317–321CrossRefGoogle Scholar
  52. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569Google Scholar
  53. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175CrossRefGoogle Scholar
  54. Rundgren M, Ingolfsson O (1999) Plant survival in Iceland during periods of glaciation? J Biogeogr 26:387–396CrossRefGoogle Scholar
  55. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates very among sites: application to human mitochondrial DNA. Genetics 152:1079–1089PubMedPubMedCentralGoogle Scholar
  56. Sedberry GR, Loefer JK (2001) Satellite telemetry tracking of swordfish, Xiphias gladius off the eastern United States. Mar Biol 139:355–360CrossRefGoogle Scholar
  57. Stehmann M (1995). Maturation guide for Elasmobranchs. Report of the ICES study group on Elasmobranch fishes. CM 1995/G:3 85 pGoogle Scholar
  58. Stehmann M, Bürkel DL (1994) Rajidae. In: Whitehead PJP, Bauchot ML, Hureau J-C, Nielsen J, and Tortonese E (eds) Fishes of the North-eastern Atlantic and Mediterranean Vol. I. pp. 163–196, UNESCO, ParisGoogle Scholar
  59. Strimmer K, Pybus OG (2001) Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol 18: 2298–2305CrossRefGoogle Scholar
  60. Sulikowski JA, Kneebone J, Elzey S, Jurek J, Danley PD, Howell WH, Tsang PCW (2005) The reproductive cycle of the thorny skate (Amblyraja radiata) in the western Gulf of Maine. Fish Bull 103:536–543Google Scholar
  61. Sunnucks P, Wilson A, Beheregaray L, Zenger K, French J, Taylor A (2000) SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol 9:1699–1710CrossRefGoogle Scholar
  62. Swofford D (1998) PAUP*4b10. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  63. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  64. Templeman W (1984) Migrations of thorny skate, Raja radiata, tagged in Newfoundland area. J North Atl Fish Sci 5:55–63CrossRefGoogle Scholar
  65. Templeton AR (2004) Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol Ecol 13:789–809CrossRefGoogle Scholar
  66. Templeton AR, Sing CF (1993) A Cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. 4. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669PubMedPubMedCentralGoogle Scholar
  67. Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics 140:767–782PubMedPubMedCentralGoogle Scholar
  68. Van Oppen MJH, Olsen JL, Stam WT (1995) Genetic variation within and among North Atlantic and Baltic populations of the benthic alga Phycodrys rubens (Rhodophyta). Eur J Phycol 30:251–260CrossRefGoogle Scholar
  69. Walker PA. (1998) Dynamics of North Sea ray populations. PhD Thesis, University of Amsterdam, The NetherlandsGoogle Scholar
  70. Walker PA, Howlett G, Millner R (1997) Distribution, movement and stock structure of three ray species in the North Sea and Eastern English Channel. ICES J Mar Sci 54:797–808CrossRefGoogle Scholar
  71. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450CrossRefGoogle Scholar
  72. Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic Intertidal. Evolution 55:2455–2469CrossRefGoogle Scholar
  73. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  74. Wright S (1969) Evolution and the genetics of population. Vol 2. The theory of gene frequencies. Chicago University Press, ChicagoGoogle Scholar
  75. Zagwijn WH (1992) The beginning of the Ice Age in Europe and its major subdivisions. Quat Sci Rev 11:583–591CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Malia Chevolot
    • 1
    Email author
  • Peter H. J. Wolfs
    • 1
  • Jónbjörn Pálsson
    • 2
  • Adriaan D. Rijnsdorp
    • 3
  • Wytze T. Stam
    • 1
  • Jeanine L. Olsen
    • 1
  1. 1.Department of Marine Benthic Ecology and Evolution, Center for Ecological and Evolutionary Studies, Biological CentreUniversity of Groningen9750 AA HarenThe Netherlands
  2. 2.Marine Research Institute121 ReykjavikIceland
  3. 3.Wageningen Institute for Marine Research and Ecological Studies (IMARES), Animal Sciences Group1970 AB IJmuidenThe Netherlands

Personalised recommendations