Advertisement

Marine Biology

, Volume 151, Issue 3, pp 997–1008 | Cite as

Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis

  • Bastien Mérigot
  • Yves Letourneur
  • Raymonde Lecomte-Finiger
Research Article

Abstract

Shape analyses were carried out on otoliths of the common sole, Solea solea (Linnaeus, 1758), in order to discriminate local populations in the North-Western Mediterranean Sea. Samples were collected in various environments like coastal lagoons, the outlet of the Rhone River as well as other marine sites. Morphological analyses highlighted a significant asymmetry between the left and right otoliths. This character could be acquired during or shortly after settlement on soft-bottoms when the individuals really become flatfishes. The otolith shape was described by seven harmonics from elliptic Fourier descriptors and by five indices of shape (coefficient of form, roundness, circularity, rectangularity, and ellipticity). The existence of several local populations of common sole in the NW Mediterranean was demonstrated. In particular, discriminant analyses highlighted significant differences in otolith shape according both to fish size and to the types of environment in which the fish live, i.e. coastal lagoons vs. marine sites, but also between sites belonging to the same type (lagoons, and marine sites). The differences in shape could be linked (1) to the particular environmental conditions of each site, and (2) to changes in metabolic and/or physiological conditions according to the stage of development of the fish which most likely influences the otolith growth.

Keywords

Fourier Coefficient Coastal Lagoon Shape Index Fish Size Canonical Discriminant Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Greatest thanks are expressed to J.-P. Durbec for his valuable statistical advices, M. Pichon for improving our English on a first draft, J.-P. Quignard for his precious help with fishermen from the lagoons of Thau and Mauguio, A. Darnaude for collecting most individuals off the Rhone River mouth during her PhD, and the anonymous referees for their constructive suggestions on the manuscript.

References

  1. Aguirre H, Lombarte A (1999) Ecomorphological comparison of sagittae of Mullus barbatus and M. surmulletus. J Fish Biol 55:105–114Google Scholar
  2. Aldebert Y (1997) Demersal resources of the Gulf of Lions (NW Mediterranean). Impact of exploitation on fish diversity. Vie Milieu 47:275–284Google Scholar
  3. Anken RH, Kappel T, Rahmann H (1998) Morphometry of fish inner ear otoliths after development at 3G hypergravity. Acta Oto Laryngo 118:534–539CrossRefGoogle Scholar
  4. Asano M, Mugiya Y (1993) Biochemical and calcium-binding properties of water-soluble proteins isoleted from otoliths of the tilapia, Orechromis niloticus. Comp Biochem Physiol 104:201–205CrossRefGoogle Scholar
  5. Begg GA, Brown RW (2000) Stock identification of haddock Melanogrammus aeglefinus on Georges Bank based on otolith shape analysis. Trans Am Fish Soc 129:935–945CrossRefGoogle Scholar
  6. Begg GA, Overholtz WJ, Munroe NJ (2001) The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on George Bank. Fish Bull 99:1–14Google Scholar
  7. Bellan-Santini D, Lacaze JC, Poizat C (eds) (1994) Les biocénoses marines et littorales de Méditerranée. Synthèse, menaces et perspectives. Muséum National Histoire Naturelle, ParisGoogle Scholar
  8. Bolles KL, Begg GA (2000) Distinction between silver hake (Merluccius bilinearis) stocks in US waters of the northwest Atlantic based on whole otolith morphometrics. Fish Bull 98:451–462Google Scholar
  9. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297CrossRefGoogle Scholar
  10. Campana SE, Casselman JL (1993) Stock discrimination using otolith shape analysis. Can J Fish Aquat Sci 50:1062–1083CrossRefGoogle Scholar
  11. Campana SE, Neilson JD (1985) Microstructure of fish otoliths. Can J Fish Aquat Sci 42:1014–1032CrossRefGoogle Scholar
  12. Campillo A (1992) Les pêcheries françaises de Méditerranée: synthèse des connaissances. IFREMER, RIDRV-92/019-RH Sète, 206 ppGoogle Scholar
  13. Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H (2004) Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can J Fish Aquat Sci 61:158–167CrossRefGoogle Scholar
  14. Casselman JM (1987) Determination of age and growth. In: Weatherley AH, Gill HS (eds) The biology of fish growth. Academic, Orlando, pp 209–242Google Scholar
  15. Castanguay M, Simard P, Gagnon P (1991) Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Can J Fish Aquat Sci 48:296–302CrossRefGoogle Scholar
  16. Crampton JS (1995) Elliptic Fourier shape analysis of fossil bivalves, practical consideration. Lethaia 28:179–186CrossRefGoogle Scholar
  17. Darnaude AM, Harmelin-Vivien ML, Salen-Picard C (2001) Food partitioning among flatfish (Pisces, Pleuronectiforms) juveniles in Mediterranean coastal shallow sandy areas. J Mar Biol Assoc UK 81:119–127CrossRefGoogle Scholar
  18. Darnaude AM, Salen-Picard C, Polunin NVC, Harmelin-Vivien ML (2004a) Trophodynamic linkage between river run-off and coastal fishery yield elucidated by stable isotope data in the Gulf of Lions (NW Mediterranean). Oecologia 138:325–332CrossRefGoogle Scholar
  19. Darnaude AM, Salen-Picard C, Harmelin-Vivien ML (2004b) Depth variation in terrestrial particulate organic matter exploitation by marine coastal benthic communities off the Rhone River delta (NW Mediterranean). Mar Ecol Prog Ser 275:47–57CrossRefGoogle Scholar
  20. De Vries DA, Grimes CB, Prager MH (2002) Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fish Res 57:51–62CrossRefGoogle Scholar
  21. Farrugio H, Olivier P, Biagi F (1993) An overview of the history, knowledge, recent and future research trends in Mediterranean fisheries. Sci Mar 57:105–119Google Scholar
  22. Ferraton F, Harmelin-Vivien ML, Mellon-Duval C, Souplet A (2006) Does spatio-temporal variation in diet affect condition and abundance of European hake (Merluccius merluccius) juveniles in the Gulf of Lions (NW Mediterranean)? Mar Ecol Prog Ser (in press)Google Scholar
  23. Ferson S, Rohlf FJ, Koehn RK (1985) Measuring shape variation of two-dimensional outlines. Syst Zool 34:59–68CrossRefGoogle Scholar
  24. Friedland KD, Reddin DG (1994) Use of otolith morphology in stock discriminations of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 51:91–98CrossRefGoogle Scholar
  25. Gaertner JC, Chessel D, Bertrand JA (1997) Stability of spatial structures of demersal assemblages: a multitable approach. Aquat Living Resour 11:75–85CrossRefGoogle Scholar
  26. Gaertner JC, Bertrand JA, Gil de Sola L, Durbec JP, Ferrandis E, Souplet A (2005) Large spatial scale variation of demersal fish assemblage on the continental shelf of the NW Mediterranean Sea. Mar Ecol Prog Ser 297:245–257CrossRefGoogle Scholar
  27. Gagliano M, McCormick MI (2004) Feeding history influences otolith shape in tropical fish. Mar Ecol Prog Ser 278:291–296CrossRefGoogle Scholar
  28. Gauldie RW, Neilson DGA (1990) Otolith growth in fishes. Comp Biochem Physiol 97:119–135CrossRefGoogle Scholar
  29. Graf W, Baker R (1983) Adaptive changes of the vestibulo-ocular reflex in flatfish are achieved by reorganization of central nervous pathways. Science 221:777–779CrossRefPubMedCentralGoogle Scholar
  30. Guelorget O, Pertuisot JP (1992) Paralic ecosystems, biological organization and functioning. Vie Milieu 42:215–251Google Scholar
  31. Hoff GR, Fuiman LA (1993) Morphometry and composition of red drum otoliths: changes associated with temperature, somatic growth rate, age. Comp Biochem Physiol 106:209–219CrossRefGoogle Scholar
  32. Iwata H, Ukai Y (2002) Shape: a computer program package for quantitative evaluation of biological shapes based on Elliptic Fourier descriptors. J Hered 93:384–385CrossRefPubMedCentralGoogle Scholar
  33. Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process 18:236–258CrossRefGoogle Scholar
  34. L’Abée-Lund JH (1988) Otolith shape discriminates between juvenile Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L. J Fish Biol 33:899–903CrossRefGoogle Scholar
  35. L’Abée-Lund JH, Jensen AJ (1993) Otoliths as natural tags in the systematics of salmonids. Environ Biol Fishes 36:389–393CrossRefGoogle Scholar
  36. Lecomte-Finiger R (1999) L’otolithe, la boîte noire des Téléostéens. Ann Biol 38:107–122Google Scholar
  37. Lombarte A, Lleonart J (1993) Otolith size changes related with body growth, habitat depth and temperature. Environ Biol Fishes 37:297–306CrossRefGoogle Scholar
  38. Lychakov DV, Rebane YT (2000) Otolith regularities. Hear Res 143:83–102CrossRefPubMedCentralGoogle Scholar
  39. Lychakov DV, Rebane YT (2005) Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hear Res 201:55–69CrossRefPubMedCentralGoogle Scholar
  40. Newman SJ, Dunk IJ (2002) Growth, age validation, mortality, and other population characteristics of the red emperor snapper, Lutjanus sebae (Cuvier, 1828), off the Kimberley Coast of North-Western Australia. Estuar Coast Shelf Sci 55:67–80CrossRefGoogle Scholar
  41. Nolf D (1985) Otolithi piscium. In: Schultze HP (ed) Handbook of paleoichthyology. Fischer Verlag, Stuttgart New York, pp 1–145Google Scholar
  42. Nolf D (1993) A survey of perciform otoliths and their interest for phylogenetic analysis, with an iconographic synopsis of the Percoidei. Bull Mar Sci 52:220–239Google Scholar
  43. Panfili J, de Pontual H, Troadec H, Wright PJ (Eds) (2002) Manuel de sclérochronologie des poissons. Coédition Ifremer-IRD. ParisGoogle Scholar
  44. Pannella G (1971) Fish otolith: daily growth layers and periodical patterns. Science 173:1124–1126CrossRefGoogle Scholar
  45. Parisi-Baradad V, Lombarte A, Garcia-Ladona E, Cabestany J, Piera J, Chic O (2005) Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. Mar Fresh Res 56:1–10CrossRefGoogle Scholar
  46. Parmentier E, Vandewalle P, Lagardère F (2001) Morpho-anatomy of the otic region in carapid fishes: ecomorphological study of their otoliths. J Fish Biol 58:1046–1068CrossRefGoogle Scholar
  47. Ponton D (2006) Is geometric morphometrics efficient for comparing otolith shape of different fish species? J Morphol 267:750–757CrossRefPubMedCentralGoogle Scholar
  48. Popper AN, Ramcharitar J, Campana SE (2005) Why otoliths? Insights from inner ear physiology and fisheries biology. Mar Fresh Res 56:497–504CrossRefGoogle Scholar
  49. Pothin K, Letourneur Y, Lecomte-Finiger R (2004) Age, growth and mortality of the tropical grouper Epinephelus merra Bloch, 1793 (Pisces, Serranidae) on Reunion Island, SW Indian Ocean. Vie Milieu 54:193–202Google Scholar
  50. Pothin K, Gonzales-Salas C, Chabanet P, Lecomte-Finiger R (2006) Distinction between Mulloidichthys flavolineatus juveniles from Reunion Island and Mauritius Island (south-west Indian Ocean) based on otolith morphometrics. J Fish Biol 69:38–53CrossRefGoogle Scholar
  51. Quéro J-C, Vayne J-J (1997) Les poissons de mer des pêches françaises. Delachaux & Niestlé, ParisGoogle Scholar
  52. Reddin DG, Stansbury DE, Short PB (1988) Contigent of origin of Atlantic salmon (Salmo salar L.) at West Greenland. J Cons Int Explor Mer 44:180–188CrossRefGoogle Scholar
  53. Reist JD (1985) An empirical evaluation of several univariate methods that adjust for size variation in morphometric data. Can J Zool 63:1429–1439CrossRefGoogle Scholar
  54. Russ JC (1990) Computer-assisted microscopy: the measurement and analysis of images. Plenum Press, New YorkCrossRefGoogle Scholar
  55. Salen-Picard C, Darnaude AM, Arlhac D, Harmelin-Vivien ML (2002) Fluctuations of macrobenthic populations: a link between climate-driven river run-off and sole fishery yields in the Gulf of Lions. Oecologia 133:380–388CrossRefPubMedCentralGoogle Scholar
  56. Shéhata S (1984) Contribution à la connaissance des Soléidés (Poissons, Téléostéens) du golfe du Lion. Systématique—Ecobiologie. Thèse de Doctorat, Université de Montpellier II. MontpellierGoogle Scholar
  57. Smith MK (1992) Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus. Can J Fish Aquat Sci 49:795–804CrossRefGoogle Scholar
  58. Stransky C (2005) Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis. ICES J Mar Sci 62:1691–1698CrossRefGoogle Scholar
  59. Stransky C, MacLellan SE (2005) Species separation and zoogeography of redfish and rockfish (genus Sebastes) by otolith shape analysis. Can J Fish Aquat Sci 62:2265–2276CrossRefGoogle Scholar
  60. Takabayashi A, Ohmura-Iwasaki T (2003) Functional asymmetry estimated by measurements of otolith in fish. Biol Sci Space 17:293–297CrossRefPubMedCentralGoogle Scholar
  61. Toole CL, Markle DF, Harris PM (1993) Relationship between otolith microstructure, microchemistry, and early life history events in Dover sole, Microstomus pacificus. Fish Bull 91:732–753Google Scholar
  62. Tracey SR, Lyle JM, Duhamel G (2006) Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish Res 77:138–147CrossRefGoogle Scholar
  63. Tuset VM, Lozano IJ, Gonzalez JA, Pertusa JF, Garcia-Diaz MM (2003a) Shape indices to identify regional differences in otolith morphology of comber Serranus cabrilla (L., 1758). J Appl Ichthyol 19:88–93CrossRefGoogle Scholar
  64. Tuset VM, Lombarte A, Gonzalez JA, Pertusa JF, Lorentes MJ (2003b) Comparative morphology of the sagittal otolith in Serranus spp. J Fish Biol 63:1491–1504CrossRefGoogle Scholar
  65. Volpedo A, Echeverria DD (2003) Ecomorphological patterns of the sagittal in fish on the continental shelf off Argentine. Fish Res 60:551–560CrossRefGoogle Scholar
  66. Watkinson DA, Gillis DM (2005) Stock discrimination of Lake Winnipeg walleye based on Fourier and wavelet description of scale outline signals. Fish Res 72:193–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bastien Mérigot
    • 1
  • Yves Letourneur
    • 1
  • Raymonde Lecomte-Finiger
    • 2
  1. 1.Centre d’Océanologie de MarseilleUniversité de la MéditerranéeMarseille Cedex 09France
  2. 2.Ecole Pratique des Hautes EtudesUniversité de PerpignanPerpignan CedexFrance

Personalised recommendations