Marine Biology

, Volume 151, Issue 3, pp 1035–1050 | Cite as

Differential patterns of mesozooplankters’ distribution in relation to physical and biological variables of the northeastern Aegean Sea (eastern Mediterranean)

  • S.  IsariEmail author
  • S.  Psarra
  • P.  Pitta
  • P. Mara
  • M. O. Tomprou
  • A. Ramfos
  • S. Somarakis
  • A. Tselepides
  • C. Koutsikopoulos
  • N. Fragopoulu
Research Article


Mesozooplankton group composition was examined in the Northeastern Aegean Sea (NEA) over a grid of 30 stations sampled during July 2004. The surface water layer influenced by the low salinity Black Sea waters (BSW) is considered in this paper. We attempted to study horizontal distribution patterns of major mesozooplankters within a more comprehensive framework, taking into account not only hydrology but also available, concurrently collected data on lower trophic levels (autotrophic and microbial heterotrophic communities). BSW was mainly restricted in the eastern part of the surveyed area where it was entrapped in a ca. 50-km wide anticyclone (the “Samothraki” gyre). High Chlα concentrations, autotrophic biomass as well as abundance and biomass of mesozooplankton were associated with the BSW, with the highest values recorded inside the gyre as well as at its coastal northern periphery and the lowest values towards the western and offshore part of the surveyed area characterized by high salinity waters of Levantine origin. Among mesozooplankters, cladocerans (mainly Penilia avirostris) showed a high abundance within the gyre in contrast to the very low abundance of copepods and appendicularians. Low salinity-high temperature gyre waters were characterized by the dominance of cyanobacteria of the genus Synechococcus in autotrophic biomass and the significant contribution of heterotrophic nanoflagellates in microbial heterotrophic biomass. Based on existing knowledge on ecophysiological traits and prey size-spectra selectivity, we discuss the observed distribution patterns of major mesozooplankton groups in terms of ambient abiotic parameters and the possible biological interactions among these groups as well as with lower or upper trophic levels.


Synechococcus Dissolve Organic Carbon Concentration Cladoceran Species Heterotrophic Nanoflagellates Mesozooplankton Community 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The present study was supported by the EU project ANREC (QLRT-2001-01216). The authors wish to thank the captain and the crew of R/V ‘Aegaeo’ as well as all participant scientists for their support at sea. Thanks are also due to two anonymous referees for their advices and suggestions in the improvement of the manuscript.


  1. Agawin NSR, Duarte CM, Agusti S (1998) Growth and abundance of Synechococcus sp. in a mediterranean bay: seasonality and relationship with temperature. Mar Ecol Prog Ser 170:45–53CrossRefGoogle Scholar
  2. Agawin NSR, Duarte CM, Agusti S (2000) Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol Oceanogr 45:591–600CrossRefGoogle Scholar
  3. Atienza D, Saiz E, Calbet A (2006) Feeding ecology of the marine cladoceran Penilia avirostris: natural diet, prey selectivity and daily ration. Mar Ecol Prog Ser 315:211–220CrossRefGoogle Scholar
  4. Azam F, Fenchel T, Field JG, Gray JS, Meyerreil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  5. Bollens SM, Frost BW, Cordell JR (1994) Chemical, mechanical and visual cues in the vertical mirgration behavior of the marine planktonic copepod Acartia hudsonica. J Plankton Res 16:555–564CrossRefGoogle Scholar
  6. Calbet A, Landry (1999) Mesozooplankton influences on the microbial food web: direct and indirect interactions in the oligotrophic open ocean. Limnol Oceanogr 44:1370–1380CrossRefGoogle Scholar
  7. Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38:157–167CrossRefGoogle Scholar
  8. Calbet A, Garrido S, Saiz E, Alcaraz M, Duarte C (2001) Annual zooplankton succession in coastal NW Mediterranean waters: the importance of the smaller size fractions. J Plankton Res 23: 319–331CrossRefGoogle Scholar
  9. Capitanio FL, Pajaro M, Esnal GB (2005) Appendicularians: an important food supply for the Argentine anchovy Engraulis anchoita in coastal waters. J Appl Ichthyol 21:414–419CrossRefGoogle Scholar
  10. Caron DA, Dam HG, Kremer P, Lessard EJ, Madin LP, Malone TC, Napp JM, Peele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res I 42:943–972CrossRefGoogle Scholar
  11. Christou ED, Stergiou KI (1998) Modelling and forecasting the fortnightly cladoceran abundance in the Saronikos Gulf (Aegean Sea). J Plankton Res 20:1313–1320CrossRefGoogle Scholar
  12. Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Natural Environment Research Council, Plymouth Marine Laboratory, PlymouthGoogle Scholar
  13. Cushing DH (1989) A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J Plankton Res 11:1–13CrossRefGoogle Scholar
  14. Egloff DA, Fofonoff PW, Onbe T (1997) Reproductive biology of marine Cladocerans. Adv Mar Biol 31:80–153Google Scholar
  15. Fernandez de Puelles ML, Gras D, Hernandez-Leon S (2003) Annual cycle of zooplankton biomass, abundance and species composition in the Neritic area of the Balearic Sea, western mediterranean. Mar Ecol-P S Z N I 24:123–139CrossRefGoogle Scholar
  16. Fernandez de Puelles ML, Valencia J, Jansá J, Morillas A (2004) Hydrographical characteristics and zooplankton distribution in the Mallorca channel (western mediterranean): spring 2001 ICES. J Mar Sci 61:654–666Google Scholar
  17. Fonda Umani S, Tirelli V, Beran A, Guardiani B (2005) Relationships between microzooplankton and mesozooplankton: competition versus predation on natural assemblages of the Gulf of Trieste (northern Adriatic Sea). J Plankton Res 27:973–986CrossRefGoogle Scholar
  18. Fortier L, Le Fevre J, Legendre L (1994) Export of biogenic carbon to fish and deep ocean: the role of large planktonic microphages. J Plankton Res 16:809–839CrossRefGoogle Scholar
  19. Giannoulaki M, Machias A, Somarakis S, Tsimenides N (2005) The spatial distribution of anchovy and sardine in the northern Aegean Sea in relation to hydrographic regimes. Belg J Zool 135:151–156Google Scholar
  20. Gorsky G, Fenaux L (1998) The role of appendicularia in marine food webs. In: Bone Q (ed) The biology of pelagic tunicates. Oxford University Press, Oxford, pp 161–169Google Scholar
  21. Gorsky G, Chrétiennot-Dinet MJ, Blanchot J, Palazzoli I (1999) Picoplankton and nanoplankton aggregation by appendicularians: Fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. J Geophys Res 104:3381–3390CrossRefGoogle Scholar
  22. Hillebrand H, Durselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  23. Hopcroft RR, Roff JC (1995) Zooplankton growth-rates: extraordinary production by the larvacean Oikopleura dioica in tropical waters. J Plankton Res 17:205–220CrossRefGoogle Scholar
  24. Ignatiades L, Psarra S, Zervakis V, Pagou K, Souvermezoglou E, Assimakopoulou G, Gotsis-Skretas O (2002) Phytoplankton size-based dynamics in the Aegean Sea (eastern mediterranean). J Mar Syst 36:11–28CrossRefGoogle Scholar
  25. Isari S, Fragopoulu N, Siapatis Α, Machias Α, Somarakis S. Study of fish larvae assemblage structure in north-eastern Aegean Sea during June 2003 (2005). In: Proceedings 12th Hell Icthyol Conference (with English abstract):128–131Google Scholar
  26. Isari S, Ramfos A, Somarakis S, Koutsikopoulos C, Kallianiotis A, Fragopoulu N (2006) Mesozooplankton distribution in relation to hydrology of the north-eastern Aegean Sea, eastern mediterranean. J Plankton Res 28:241–255CrossRefGoogle Scholar
  27. Johns DG, Edwards M, Greve W, Sjohn AWG (2005) Increasing prevalence of the marine cladoceran Penilia avirostris (Dana, 1852) in the North Sea. Helgoland Mar Res 59:214–218CrossRefGoogle Scholar
  28. Kana T, Glibert PM (1987) Effect of irradiances up to 2,000 μEm−2 s−1 on marine Synechococcus WH 7803-I. Growth, pigmentation and cell composition. Deep Sea Res 34:479–516CrossRefGoogle Scholar
  29. Katechakis A, Stibor H (2004) Feeding selectivities of the marine cladocerans Penilia avirostris, Podon intermedius and Evadne nordmanni. Mar Biol 145:529–539CrossRefGoogle Scholar
  30. Katechakis A, Stibor H, Sommer U, Hansen T (2002) Changes in the phytoplankton community and microbial food web of Blanes Bay (Catalan Sea, NW mediterranean) under prolonged grazing pressure by doliolids (Tunicata), cladocerans or copepods (Crustacea). Mar Ecol Prog Ser 234:55–69CrossRefGoogle Scholar
  31. Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW mediterranean). J Plankton Res 26:589–603CrossRefGoogle Scholar
  32. Kiørboe T (1993) Turbulence, phytoplankton cell size and the structure of pelagic food webs. Adv Mar Biol 29:1–72CrossRefGoogle Scholar
  33. Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microb 53:1298–1303Google Scholar
  34. Lipej L, Mozetic P, Turk V, Malej A (1997) The trophic role of the marine cladoceran Penilia avirostris in the Gulf to Trieste. Hydrobiologia 360:197–203CrossRefGoogle Scholar
  35. Lorenzen C, Jeffrey J (1980) Determination of chlorophyll in seawater. UNESCO Technical Paper. Mar Sci 35:1–20Google Scholar
  36. Lykousis V, Chronis G, Tselepides A, Price NB, Theocharis A, Siokou-Frangou I, Van Wambeke F, Danovaro R, Stavrakakis S, Duineveld G, Georgopoulos D, Ignatiades L, Souvermezoglou A, Voutsinou-Taliadouri F (2002) Major outputs of the recent multidisciplinary biogeochemical researches undertaken in the Aegean Sea. J Mar Syst 33–34:313–334CrossRefGoogle Scholar
  37. Marazzo A, Valentin JL (2001) Spatial and temporal variations of Penilia avirostris and Pseudevadne tergestina (Crustacea, Branchiopoda) in a Tropical Bay, Brazil. Hydrobiologia 445:133–139CrossRefGoogle Scholar
  38. Marazzo A, Valentin JL (2003a) Penilia avirostris (Crustacea, Ctenopoda) in a tropical bay: variations in density and aspects of reproduction. Acta Oecol 24:S251–S257CrossRefGoogle Scholar
  39. Marazzo A, Valentin JL (2003b) Population dynamics of Penilia avirostris (Dana, 1852) (Cladocera) in a Tropical Bay. Crustaceana 76:803–817CrossRefGoogle Scholar
  40. Marazzo A, Valentin JL (2004) Population dynamics of Pseudevadne tergestina (Branchiopoda: Onychopoda) in Guanabara Bay, Brazil. Braz Arch Biol Technol 47:713–723CrossRefGoogle Scholar
  41. Mazzocchi MG, Christou ED, Fragopoulu N, Siokou-Frangou I (1997) Mesozooplankton distribution from Sicily to Cyprus (eastern mediterranean): general aspects. Oceanol Acta 20:521–535Google Scholar
  42. Montagnes DJS, Berges AJ, Harrison JP, Taylor RJF (1994) Estimating carbon, nitrogen, protein, and chlorophyll a from volume in marine phytoplankton. Limnol Oceanogr 39:1044–1060CrossRefGoogle Scholar
  43. Moraitou-Apostolopoulou M, Kiortsis V (1973) The cladocerans of the Aegean Sea: occurrence and seasonal variation. Mar Biol 20:137–143CrossRefGoogle Scholar
  44. Mousseau L, Legendre L, Fortier L (1996) Dynamics of size-fractionated phytoplankton and trophic pathways on the Scotian Shelf and at the shelf break, north-west Atlantic. Aquat Microb Ecol 10:149–163CrossRefGoogle Scholar
  45. Mousseau L, Fortier L, Legendre L (1998) Annual production of fish larvae and their prey in relation to size-fractionated primary production (Scotian Shelf, NW Atlantic). ICES J Mar Sci 55:44–57CrossRefGoogle Scholar
  46. Nakamura Y (1998) Blooms of tunicates Oikopleura spp. and Dolioletta gegenbauri in the Seto Inland Sea, Japan, during summer. Hydrobiologia 385:183–192CrossRefGoogle Scholar
  47. Nakamura Y, Suzuki K, Suzuki S, Hiromi J (1997) Production of Oikopleura dioica (Appendicularia) following a picoplankton ‘bloom’ in a eutrophic coastal area. J Plankton Res 19:113–124CrossRefGoogle Scholar
  48. Nikolioudakis N, Koutsikopoulos N, Machias A, Somarakis S (2005) Distribution and abundance of eggs and larvae of anchovy in relation to the oceanographical conditions of NE Aegean Sea. In: Proceedings 12th Hell Icthyol Conference (with English abstract):140–143Google Scholar
  49. Onbe T, Ikeda T (1995) Marine Cladocerans in Toyama Bay, southern Japan Sea—seasonal occurrence and day-night vertical distributions. J Plankton Res 17:595–609CrossRefGoogle Scholar
  50. Paffenhöfer GA, Orcutt JD (1986) Feeding, growth and food conversion of the marine cladoceran Penilia avirostris. J Plankton Res 8:741–754CrossRefGoogle Scholar
  51. Paffenhöfer GA, Atkinson LP, Lee TN, Verity PG, Bulluck LR (1995) Distribution and abundance of thaliaceans and copepods off the southeastern USA during winter. Cont Shelf Res 15:255–280CrossRefGoogle Scholar
  52. Pinca S, Dallot S (1995) Meso- and macrozooplankton composition patterns related to hydrodynamic structures in the Ligurian Sea (Trophos-2 experiment, April–June 1986). Mar Ecol Prog Ser 126:49–65CrossRefGoogle Scholar
  53. Pitta P, Giannakourou A (2000) Planktonic ciliates in the oligotrophic eastern mediterranean: vertical, spatial distribution and mixotrophy. Mar Ecol Prog Ser 194:269–282CrossRefGoogle Scholar
  54. Pitta P, Giannakourou A, Christaki U (2001) Planktonic ciliates in the oligotrophic eastern mediterranean: longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat Microb Ecol 24:297–311CrossRefGoogle Scholar
  55. Pitta P, Stambler N, Tanaka T, Zohary T, Tselepides A, Rassoulzadegan F (2005) Biological response to P addition in the eastern mediterranean sea. The microbial race against time. Deep Sea Res II 52:2961–2974CrossRefGoogle Scholar
  56. Polat C, Tugrul S (1996) Chemical exchange between the Mediterranean and Black Sea via the Turkish straits. Bull Inst Oceanogr 17:167–186Google Scholar
  57. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  58. Psarra S, Tselepides A, Ignatiades (2000) Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual variability. Progr Oceanogr 46:187–204CrossRefGoogle Scholar
  59. Psarra S, Zohary T, Krom MD, Mantoura RFC, Polychronaki T, Stambler N, Tanaka T, Tselepides A, Thingstad TF (2005) Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (eastern mediterranean). Deep Sea Res IΙ 52:2944–2960CrossRefGoogle Scholar
  60. Putt M, Stoecker DK (1989) An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol Oceanogr 34:1097–1103CrossRefGoogle Scholar
  61. Ramfos A, Somarakis S, Koutsikopoulos C, Fragopoulu N (2005) Summer mesozooplankton distribution in coastal waters of central Greece (eastern Mediterranean). I. Hydrology and group composition. J Mar Biol Ass UK 85:755–764CrossRefGoogle Scholar
  62. Ramfos A, Isari S, Somarakis S, Georgopoulos D, Koutsikopoulos C, Fragopoulu N (2006) Mesozooplankton community structure in offshore and coastal waters of the Ionian Sea (eastern Mediterranean) during mixed and stratified conditions. Mar Biol 150:29–44CrossRefGoogle Scholar
  63. Ribera d’Alcala M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal mediterranean site (Gulf of Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83CrossRefGoogle Scholar
  64. Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplankton studies. J Plankton Res 7:279–294CrossRefGoogle Scholar
  65. Rose K, Roff JC, Hopcroft RR (2004) Production of Penilia avirostris in Kingston Harbour, Jamaica. J Plankton Res 26:605–615CrossRefGoogle Scholar
  66. Sabates A, Gili JM, Pages F (1989) Relationship between zooplankton distribution, geographic characteristics and hydrographic patterns off the Catalan coast (western mediterranean). Mar Biol 103:153–159CrossRefGoogle Scholar
  67. Satapoomin S, NielsenTG, Hansen PJ (2004) Andaman Sea copepods: spatio-temporal variations in biomass and production, and role in the pelagic food web. Mar Ecol Prog Ser 274:99–122CrossRefGoogle Scholar
  68. Sempere R, Panagiotopoulos C, Lafont R, Marroni B, Van Wambeke F (2002) Total organic carbon dynamics in the Aegean Sea. J Mar Sys 33–34:355–364CrossRefGoogle Scholar
  69. Siokou-Frangou I (1996) Zooplankton annual cycle in a mediterranean coastal area. J Plankton Res 18:203–223CrossRefGoogle Scholar
  70. Siokou-Frangou I, Bianchi M, Christaki U, Christou ED, Giannakourou A, Gotsis-Skretas O, Ignatiades L, Pagou K, Psarra S, Souvermezoglou E, Van Wambeke F, Zervakis V (2002) Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean sea. J Mar Syst 33–34:335–353CrossRefGoogle Scholar
  71. Somarakis S (2005) Marked interannual differences in reproductive parameters and daily egg production of anchovy in the northern Aegean Sea. Belg J Zool 134(suppl I):123–132Google Scholar
  72. Somarakis S, Drakopoulos PG, Filippou V (2002) Distribution and abundance of larval fish in the northern Aegean Sea—eastern Mediterranean—in relation to early summer oceanographic conditions. J Plankton Res 24:339–357CrossRefGoogle Scholar
  73. Somarakis S, Palomera I, Garcia A, Quintanilla L, Koutsikopoulos C, Uriarte A, Motos L (2004) Daily egg production of anchovy in European waters. ICES J Mar Sci 61:944–958CrossRefGoogle Scholar
  74. Somarakis S, Ganias K, Siapatis A, Koutsikopoulos C, Machias A, Papaconstantinou C (2006) Spawning habitat and daily egg production of sardine (Sardina pilchardus) in the eastern mediterranean. Fish Oceanogr 15:281–292CrossRefGoogle Scholar
  75. Sommer U, Stibor H (2002) Copepoda–Cladocera–Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174CrossRefGoogle Scholar
  76. Stergiou KI, Christou ED, Georgopoulos D, Zenetos A, Souvermezoglou E (1997) The Hellenic Seas: physics, chemistry, biology and fisheries. Oceanogr Mar Biol Annu Rev 35:415–538Google Scholar
  77. Strathmann RR (1967) Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol Oceanogr 12:411–418CrossRefGoogle Scholar
  78. Tang KW, Chen QC, Wong CK (1995) Distribution and biology of marine Cladocerans in the coastal waters of southern China. Hydrobiologia 307:99–107CrossRefGoogle Scholar
  79. Tomita M, Shiga N, Ikeda T (2003) Seasonal occurrence and vertical distribution of appendicularians in Toyama Bay, southern Japan Sea. J Plankton Res 25:579–589CrossRefGoogle Scholar
  80. Tonnesson K, Maar M, Vargas CA, Moller EF, Satapoomin S, Zervoudaki S, Christou E, Giannakourou A, Sell A, Petersen JK, Nielsen TG, Tiselius P (2005) Grazing impact of Oikopleura dioica and copepods on an autumn plankton community. Mar Biol Res 1:365–373CrossRefGoogle Scholar
  81. Turner JT (1984) The feeding ecology of some zooplankters that are important prey items of larval fish. NOAA Technical Report NMFS7, pp 1–28Google Scholar
  82. Turner JT (2004) The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool Stud 43:255–266Google Scholar
  83. Turner JT, Tester PA, Ferguson RL (1988) The marine cladoceran Penilia avirostris and the microbial loop of the pelagic food webs. Limnol Oceanogr 33:245–255CrossRefGoogle Scholar
  84. Twatwa NM, Van der Lingen CD, Drapeau L, Moloney CL, Field JG (2005) Characterising and comparing the spawning habitats of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela upwelling ecosystem. Afr J Mar Sci 27:487–49CrossRefGoogle Scholar
  85. Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-methodik. Mitt Int Ver Theor Angew Limnol 9:1–38Google Scholar
  86. Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293CrossRefGoogle Scholar
  87. Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieraki ME (1992) Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446CrossRefGoogle Scholar
  88. Vuorinen I, Hänninen J, Kornilovs G (2003) Transfer-function modelling between environmental variation and mesozooplankton in the Baltic Sea. Prog Oceanogr 59:339–356CrossRefGoogle Scholar
  89. Wong CK, Chan ALC, Tang KW (1992) Natural ingestion rates and grazing impact of the marine cladoceran Penilia avirostris Dana in Tolo Harbor, Hong-Kong. J Plankton Res 14:1757–1765CrossRefGoogle Scholar
  90. Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res 10:221–231Google Scholar
  91. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, LondonGoogle Scholar
  92. Zervakis V, Georgopoulos D (2002) Hydrology and circulation in the North Aegean (eastern mediterranean) throughout 1997 and 1998. Med Mar Sc 3:5–19CrossRefGoogle Scholar
  93. Zervoudaki S (2005) The importance of small-sized pelagic copepods in different marine environments. PhD Thesis, University of AthensGoogle Scholar
  94. Zervoudaki S, Nielsen TG, Christou ED, Siokou-Frangou I (2006) Zooplankton distribution and diversity in a frontal area of the Aegean Sea. Mar Biol Res 2:149–168CrossRefGoogle Scholar
  95. Zodiatis G, Balopoulos E (1993) Structure and characteristics of fronts in the North Aegean Sea. Boll Oceanol Teor Applic 11:113–124Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • S.  Isari
    • 1
    Email author
  • S.  Psarra
    • 2
  • P.  Pitta
    • 2
  • P. Mara
    • 3
  • M. O. Tomprou
    • 2
    • 4
  • A. Ramfos
    • 1
  • S. Somarakis
    • 4
  • A. Tselepides
    • 2
  • C. Koutsikopoulos
    • 1
  • N. Fragopoulu
    • 1
  1. 1.Laboratory of Zoology, Department of BiologyUniversity of PatrasRioGreece
  2. 2.Hellenic Centre for Marine ResearchOceanography InstituteHeraklionGreece
  3. 3.Environmental Chemical Processes Laboratory, Department of ChemistryUniversity of CreteVoutes, HeraklionGreece
  4. 4.Department of BiologyUniversity of CreteVoutes, HeraklionGreece

Personalised recommendations