Marine Biology

, Volume 151, Issue 3, pp 907–917 | Cite as

How do dietary diatoms cause the sex reversal of the shrimp Hippolyte inermis Leach (Crustacea, Decapoda)

  • Valerio ZupoEmail author
  • Patrizia Messina
Research Article


Hippolyte inermis Leach 1915 is a protandric shrimp largely distributed in Posidonia oceanica meadows and other Mediterranean seagrasses. Previous studies demonstrated several physiological peculiarities, such as absence of female gonadic buds in adult males (the new female gonad is produced starting from few undifferentiated cells), the consequent absence of an ovotestis, 2 yearly periods of reproduction with different population structures (a spring outburst producing both males and primary females, and a fall reproduction producing mainly males), and a process of sex reversal influenced by the diatom food ingested. We performed several laboratory analyses to compare the effects of various species of benthic diatoms, in order to test the effect of different diatoms and provide information on the mechanism of action of the ingested compounds. In addition, we performed molecular tests (TUNEL) and TEM observations, to check the hypothesis that the effect of benthic diatoms may be mediated by a process of apoptosis acting on the male gonad. The results obtained allowed for a ranking of a series of benthic diatoms according to their effects on sex reversal, and a confirmation of the striking effect of Cocconeis sp. diatoms, which are able to trigger the appearance of primary females. We also demonstrated the presence of apoptosis both in the male gonad and in the androgenic glands of postlarvae. The effect is species specific, strictly localized to the male gonad and androgenic gland, and limited to a very short period of time, from the 5th to the 12th day of postlarval development.


Benthic Diatom Amphora Male Gonad Primary Female Androgenic Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was partially conducted within the degree thesis of P. Messina. The confocal microscopy observations were conducted by Dr. Isabella Buttino. We thank Dr. A. Sagi and Dr. M. Williams for the critical revision of the English text and Dr. M. De Stefano for taxonomical advices on the selected diatoms. We are indebted to Dr. E. Aflalo for the fundamental contribution in the histological researches on H. inermis. Mr G. Iamunno performed the TEM preparations. Some specimens used for TUNEL analyses were cultivated and processed within the Pharmapox project, funded by the European Commission (EU 4800) and coordinated by V. Zupo. The text was improved thanks to the suggestions of two anonymous reviewers. The correctness of English language was kindly enhanced by Mrs. R. Messina.


  1. Abdu U, Davis C, Khalaila I, Sagi A, (2002) The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. Gen Comp Endocrinol 127:263–272CrossRefGoogle Scholar
  2. Adiyodi G, Adiyodi G (1970) Endocrine control of reproduction in decapod crustacea. Biol Rev 45:121–165CrossRefGoogle Scholar
  3. Austin CM, Meewan M (1999) A preliminary study of primary sex ratios in the freshwater crayfish, Cherax destructor Clark. Aquaculture 174:43–50CrossRefGoogle Scholar
  4. Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crust Biol 20(2):116–128 Sp. Iss. SICrossRefGoogle Scholar
  5. Bedini R, Canali MG, Baldi C (1997) Mimetismo criptico nei crostacei della prateria a Posidonia oceanica (L.) Delile. Biol Mar Medit 4(1):353–355Google Scholar
  6. Bongiorni L, Pietra F (1996) Marine Natural Products for industrial application. Chem Ind 2:54–58Google Scholar
  7. Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R, D’Incalci M (2003) Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells Molt-4. Leukemia 17:52–59CrossRefGoogle Scholar
  8. Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Medit 7(2):167–190Google Scholar
  9. Calado R, Figueiredo J, Rosa R, Nunes ML, Narciso L (2005) Effects of temperature, density, and diet on development, survival, settlement synchronism, and fatty acid profile of the ornamental shrimp Lysmata seticaudata. Aquaculture 245(1–4):221–237CrossRefGoogle Scholar
  10. Charniaux-Cotton H (1954) Decouverte chez un Crustace Amphipode (Orchestia gammarella) d’une glande endocrine responsible de la differenciation des caracteres sexuels primaires et secondaires males. Comptes Rendus Acad Sci Paris 239:780–782Google Scholar
  11. Charniaux-Cotton H (1960) Sex determination. In: Waterman TH (ed) Physiology of crustacea, 1. Academic Press, New York, pp 411–447CrossRefGoogle Scholar
  12. Charniaux-Cotton H, Payen G (1988) Crustacean reproduction. In: H Laufer, Downer RGH (eds) Endocrinology of selected invertebrate types. Alan R. Liss, New York, pp 279–303Google Scholar
  13. Cobos V, Diaz V, Garcia-Raso JE, Manjòn-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis (Decapoda, Caridea): is this species really hermaphroditic? Invertebr Biol 124(4):310–320CrossRefGoogle Scholar
  14. d’Udekem d’Acoz C (1996) The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Caridea: Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool Verhand 303:1–133Google Scholar
  15. De Stefano M, Marino D, Mazzella L (2000) Marine taxa of Cocconeis on leaves of Posidonia oceanica, including a new species and two new varieties. Eur J Phycol 35(3):225–242CrossRefGoogle Scholar
  16. Dirsch VM, Kirschke SO, Estermeier M, Steffan B, Vollmar AM (2004) Apoptosis signaling triggered by the marine alkaloid ascididemin is routed via caspase-2 and JNK to mitochondria. Oncogene 23:1586–1593CrossRefGoogle Scholar
  17. Erba E, Bergamaschi D, Bassano L, Damia G, Ronzoni S, Faircloth GT, D’Incalci M (2001) Ecteinascidin-743 (ET-/l), a natural marine compound, with a unique mechanism of action. Eur J Cancer 37:97–105CrossRefGoogle Scholar
  18. Evan G, Littlewood T (1998) A matter of life and cell death. Science 281:1317–1322CrossRefGoogle Scholar
  19. Frankfurt OS, Krishan A (2001) Identification of apoptotic cells by formamide-induced DNA denaturation in condensed chromatin. J Histochem Cytochem 49:369–378CrossRefGoogle Scholar
  20. Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V (1992) Depth and seasonal distribution of some groups of vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. P.S.Z.N.I.: Mar Ecol 13:17–39Google Scholar
  21. Gherardi F, Calloni C (1993) Protandrous hermaphroditism in the tropical shrimp Athanas indicus (Decapoda: Caridea), a symbiont of sea urchins. J Crust Biol 13(4):675–689CrossRefGoogle Scholar
  22. Ginsburger-Vogel T, Charniaux-Cotton H (1982) Sex determination. In: Abele LG (ed) The biology of Crustacea. Academic, Orlando, pp 257–281Google Scholar
  23. Guillen Nieto JE (1990) Guia illustrada de los crustaceos decapodos del litoral alicantino. 316 pp. - Instituto del Cultura “Juan Gil-Albert” Publ., AlicanteGoogle Scholar
  24. Hannun YA (1997) Apoptosis and the dilemma of cancer chemotherapy. Blood 89:1845–1853PubMedGoogle Scholar
  25. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776CrossRefGoogle Scholar
  26. Ianora A, Poulet SA, Miralto A (1995) A comparative study of the inhibitory effect of diatoms on the reproductive biology of the copepod Temora stylifera. Mar Biol 121:533–539CrossRefGoogle Scholar
  27. Jimeno JM (2002) A clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs 13(1):15–19CrossRefGoogle Scholar
  28. Katakura Y (1989) Endocrine and genetic control of sex differentiation in the malacostracan Crustacea. Inv Rep Dev 16:177–182CrossRefGoogle Scholar
  29. Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256:42–49CrossRefGoogle Scholar
  30. Khalaila I, Weil S, Sagi A (1999) Endocrine balance between male and female components of the reproductive system in intersex Cherax quadricarinatus (Decapoda: Parastacidae). J Exp Zool 283:286–294CrossRefGoogle Scholar
  31. Khalaila I, Manor R, Weil S, Granot Y, Keller R, Sagi A (2002) The eyestalk-androgenic gland-testis endocrine axis in the crayfish Cherax quadricarinatus. Gen Comp Endocrinol 127(2):147–156CrossRefGoogle Scholar
  32. Le Roux A (1963) Contribution à l’étude du développement larvaire d’Hippolyte inermis Leach (Crustacée Décapode Macroure). Comptes Rendus Séanc Acad Sci Paris 256:3499–3501Google Scholar
  33. Martin G, Sorokine O, Moniatte M, Bulet P, Hetru C, Van Dorsselaer A (1999) The structure of a glycosylated protein hormone responsible for sex determination in the isopod, Armadillidium vulgare. Eur J Biochem 262:727–736CrossRefGoogle Scholar
  34. Mazzella L, Buia MC (1989) Variazioni a lungo termine in alcuni parametri strutturali di una prateria a Posidonia oceanica. Nova Thalassia 10(1):533–542Google Scholar
  35. Miralto A, Ianora A, Poulet SA (1995) Food type induces different reproductive responses in the copepod Centropages typicus. J Plankt Res 17:1521–1534CrossRefGoogle Scholar
  36. Miralto A, Ianora A, Poulet SA, Romano G, Laabir M (1996) Is fecundity modified by crowding in the copepod Centropages typicus? J Plankt Res 18:1033–1040CrossRefGoogle Scholar
  37. Miralto A, Barone G, Romano G, Poulet SA, Ianora A, Buttino I, Mazzarella G, Laabir M, Cabrini M, Giacobbe MG (1999) The insidious effect of diatoms on copepod reproduction. Nature 402(6758):173–176CrossRefGoogle Scholar
  38. Nagamine C, Knight AW, Maggenti A, Paxman G (1980) Effects of androgenic gland ablation on male primary and secondary sexual characteristics in the Malaysian prawn Macrobrachium rosenbergii (de Man) with first evidence of induced feminization in a non-hermaphroditic decapod. Gen Comp Endocrinol 41:423–441CrossRefGoogle Scholar
  39. O’Gorman DM, Cotter TG (2001) Molecular signals in anti-apoptotic survival pathways. Leukemia 15:21–34CrossRefGoogle Scholar
  40. Ohira T, Hasegawa Y, Tominaga S, Okuno A, Nagasawa H (2003) Molecular cloning and expression analysis of cDNAs encoding androgenic gland hormone precursors from two Porcellionidae species, Porcellio scaber and P. dilatatus. Zool Sci 20(1):75–81CrossRefGoogle Scholar
  41. Payen GG (1973) Etude descriptive des principales étapes de la morphogenèse sexuelle chez un crustacé décapode à développement condensé, l’Ecrevisse Pontastacus leptodactylus leptodactylus (Eschscholtz, 1823). Ann Embryol Morphog 6:179–206Google Scholar
  42. Payen GG (1983) Endocrine regulation of male genital development in malacostraca. Am Zool 23(4):951–951Google Scholar
  43. Poulet SA, Ianora A, Miralto A, Meijer L (1994) Do diatoms arrest embryonic development in copepods? Mar Ecol Prog Ser 111:79–86CrossRefGoogle Scholar
  44. Raff M (1998) Cell suicide for beginners. Nature 396:119–122CrossRefGoogle Scholar
  45. Regnault M (1969) Etude experimentale de la nutrition d’Hippolyte inermis Leach (Decapoda Natantia) au course de son developpement larvaire, au laboratoire. Internat Rev ges Hydrobiol 54:749–764CrossRefGoogle Scholar
  46. Reverberi G (1950) La situazione sessuale di Hippolyte viridis e le condizioni che la reggono. Bollettino Zoologico Italiano 4–6:91–94CrossRefGoogle Scholar
  47. Romano G, Russo GL, Buttino I, Ianora A, Miralto A (2003) A marine diatom-derived aldehyde induces apoptosis in copepod and sea urchin embryos. J Exp Biol 206(19):3487–3494CrossRefGoogle Scholar
  48. Sagi A (1988) The androgenic gland in crustacea-with emphasis on the cultured freshwater prawn Macrobrachium rosenbergii—A review. Israeli J Aquacult Bamidgeh 40(1):9–16Google Scholar
  49. Sagi A, Khalaila I (2001) The crustacean androgen: a hormone in an isopod and androgenic activity in decapods. Am Zool 41:477–484Google Scholar
  50. Sagi A, Milstein A, Eran Y, Joseph D, Khalaila I, Abdu U, Harpaz S, Karplus I (1997a) Culture of the Australian redclaw crayfish (Cherax quadricarinatus) in Israel, second growout season of overwintered populations. Israeli J Aquacult Bamidgeh 49(4):222–229Google Scholar
  51. Sagi A, Snir E, Khalaila I (1997b) Sexual differentiation in decapod crustaceans: role of the androgenic gland. Invert Reprod Devel 31:55–61CrossRefGoogle Scholar
  52. Sagi A, Manor R, Segall C, Davis C, Khalaila I (2002) On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model. Invert Reprod Devel 41:27–33CrossRefGoogle Scholar
  53. Schwartsmann G, Brondani da Rocha A, Berlinck RG, Jimeno J (2001) Marine organisms as a source of new anticancer agents. Lancet oncol 2:221–225CrossRefGoogle Scholar
  54. Schwartsmann G, Da Rocha AB, Mattei J, Lopes R (2003) Marine-derived anticancer agents in clinical trials. Expert Opin Investig Drugs 12:1367–1383CrossRefGoogle Scholar
  55. Taketomi Y., Nishikawa S, Koga S (1996) Testis and androgenic gland during development of external sexual characteristics of the crayfish Procambarus clarkii. J Crust Biol 16:24–34CrossRefGoogle Scholar
  56. Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254PubMedPubMedCentralGoogle Scholar
  57. Veillet A, Dax J, Vouax AM (1963) Inversion sexuelle et parasitisme par Bophyrina virbii (Walz) chez la crevette Hippolyte inermis (Leach). Comptes Rendus Séanc Acad Sci Paris 256:790–791Google Scholar
  58. Zariquiei Alvarez R (1968) Crustaceos Decapodos ibericos. Investigation Pesquera 32:1–510Google Scholar
  59. Zupo V (1994) Strategies of sexual inversion in Hippolyte inermis Leach (Crustacea Decapoda) from a Mediterranean seagrass meadow. J Exp Mar Biol Ecol 178:131–145CrossRefGoogle Scholar
  60. Zupo V (2000) Effect of microalgal food on sex reversal of Hippolyte inermis (Crustacea Decapoda). Mar Ecol Prog Ser 201:251–259CrossRefGoogle Scholar
  61. Zupo V (2001) Influence of diet on sex differentiation of Hippolyte inermis Leach (Decapoda: Natantia) in the field. Hydrobiologia 449:131–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Stazione Zoologica “A. Dohrn”. Benthic Ecology LaboratoryIschia, NaplesItaly

Personalised recommendations