Marine Biology

, Volume 151, Issue 1, pp 377–392 | Cite as

Importance of heterotrophic planktonic communities in a mussel culture environment: the Grande Entrée lagoon, Magdalen Islands (Québec, Canada)

  • Aurore Trottet
  • Suzanne RoyEmail author
  • Eric Tamigneaux
  • Connie Lovejoy
Research Article


Mussel culture in coastal environments relies on the availability of food of sufficient quality and quantity. Both to determine this availability and to examine impacts that this aquaculture practice may have on the environment, it is important to have good knowledge of the type of plankton communities present in aquaculture sites. It is usually thought that phytoplankton make up the bulk of mussel diet in many of these sites. Here we show that the Grande-Entrée lagoon [Magdalen Islands, Gulf of St Lawrence (GSL), Canada], where commercial mussel culture has been on-going since 1980, differs from this pattern. Heterotrophic protists dominate for most of the summer-early fall season (apart from short diatom bursts), with a high average biomass of 160 mg C m−3. The dominance of small-sized phytoplankton cells (notably green algae), low nutrient concentrations (e.g. 0.3 μM NO 3 on average) and high biomass of heterotrophic protists (mostly naked ciliates and tintinnids) all point to the importance of the microbial food web in this shallow marine environment. Sustained cultivation of suspended mussels in the lagoon suggests that these heterotrophic protists could be an important source of food for the mussels, supplementing the small amount of phytoplankton present.


Phytoplankton High Performance Liquid Chromatography Dinoflagellate Fucoxanthin Heterotrophic Flagellate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank O. Pitre for his help with sampling, F. Blouin and S. Leblanc for technical advice and help in the field and in the laboratory, G. Tita for his help. This study was funded by an Action concertée en Sciences et Technologies de la Mer (Fonds Québécois de la Recherche sur la Nature et les Technologies) grant to V. Koutitonsky, S. Roy et al., by ISMER, by RAQ (Réseau Aquaculture Québec) and by SODIM (SOciété de Développement de l’Industrie Maricole). We also thank Québec Océan for financial support of A. Trottet.


  1. Acri F (2004) Plankton communities and nutrients in the Venice Lagoon. J Mar Syst 51(1–4):321–329CrossRefGoogle Scholar
  2. Ansotegui A, Trigueros JM, Orive E (2001) The use of pigment signatures to assess phytoplankton assemblage structure in estuarine waters. Estuarine Coast Shelf Sci 52(6):689–703CrossRefGoogle Scholar
  3. Asmus RM, Asmus H (1991) Mussels beds, limiting or promoting phytoplankton? J Exp Mar Biol Ecol 148:215–232CrossRefGoogle Scholar
  4. Azam F, Fenchel T, Field JG, Gray JS, Meyer Reil L, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263CrossRefGoogle Scholar
  5. Bérard-Therriault L, Poulin M, Bossé L (1999) Guide to the identification of marine phytoplankton of the estuary and Gulf of St. Lawrence including certain protozoa. Can Spec Publ Fish Aquat Sci 128:1–387Google Scholar
  6. Bernardy Aubry F, Acri F (2004) Phytoplankton seasonality and exchange at the inlets of the Lagoon of Venice (July 2001–June 2002). J Mar Syst 51(1–4):65–76CrossRefGoogle Scholar
  7. Beukema JJ, Cadée GC, Dekker R (2002) Zoobenthic biomass limited by phytoplankton abundance: evidence from parallel changes in two long-term data series in the Wadden Sea. J Sea Res 48(2):111–125CrossRefGoogle Scholar
  8. Cadée GC, Hegeman J (2002) Phytoplankton in the Marsdiep at the end of the 20th century; 30 years monitoring biomass, primary production, and Phaeocystis blooms. J Sea Res 48(2):97–110CrossRefGoogle Scholar
  9. Capriulo GM, Lints D, Lewinter M (1990) Ingestion rate and body size in phagotrophic organisms. Can J Zool 68(2):313–317CrossRefGoogle Scholar
  10. Charpy L (1996) Phytoplankton biomass and production in two Tuamotu atoll lagoons (French Polynesia). Mar Ecol Prog Ser 145(1–3):133–142CrossRefGoogle Scholar
  11. Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD (eds) Primary productivity and biogeochemical cycles in the sea. Environmental science research, vol. 43. Plenum, New York, pp. 213–238CrossRefGoogle Scholar
  12. Clarke KR, Gorley RN (2001) PRIMER v5, User Manual/Tutorial. PRIMER-E Ltd, Plymouth, UKGoogle Scholar
  13. Clarke KR, Warwick RM (2001) Change in marine communities. An approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, Plymouth, UKGoogle Scholar
  14. Crosby MP, Newell RIE, Langdon CJ (1990) Bacterial mediation in the utilization of carbon and nitrogen from detrital complexes by the oyster, Crassostrea virginica (Gmelin). Limnol Oceanogr 35:625–639CrossRefGoogle Scholar
  15. Davenport J, Smith RJJW, Packer M (2000) Mussels Mytilus edulis: significant consumers and destroyers of mesozooplankton. Mar Ecol Prog Ser 198:131–137CrossRefGoogle Scholar
  16. De Jonge VN (1997) High remaining productivity in the Dutch western Wadden Sea despite decreasing nutrient inputs from riverine sources. Mar Pollut Bull 34(6):427–436CrossRefGoogle Scholar
  17. De Lafontaine Y, Demers S, Runge J (1991) Pelagic food web interactions and productivity in the Gulf of St. Lawrence, a perspective. In: Therriault JC (ed) The Gulf of St. Lawrence, small ocean or big estuary? Can Spec Publ Fish Aquat Sci 113:99–123Google Scholar
  18. Del Giorgio PA, Gasol JM (1995) Biomass distribution in freshwater plankton communities. Am Nat 146(1):135–152CrossRefGoogle Scholar
  19. De Sève MA, Dunbar MJ (1991) Nutrient dynamics and biological variables of Ice Biota from the Gulf of St. Lawrence, Magdalen Islands area. In: Therriault JC (ed) The Gulf of St. Lawrence, small ocean or big estuary? Can Spec Publ Fish Aquat Sci 113:201–208Google Scholar
  20. Dolan JR (1991a) Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuarine Coast Shelf Sci 33(2):137–152CrossRefGoogle Scholar
  21. Dolan JR (1991b) Microphagous ciliates in mesohaline Chesapeake Bay waters, estimates of growth rates and consumption by copepods. Mar Biol 111(2):303–309CrossRefGoogle Scholar
  22. Doyon P, Ingram RG (2000) Seasonal upper-layer T-S structure in the Gulf of St. Lawrence during the ice-free months. Deep Sea Res II 47(3–4):385–413CrossRefGoogle Scholar
  23. Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41(8):1758–1766CrossRefGoogle Scholar
  24. Dunbar MJ, MaClellan DC, Filion A, Moore D (1980) Biogeographic structure of the Gulf of St. Lawrence. Marine Sciences Centre, McGill University, Montreal, CanadaGoogle Scholar
  25. Dupuy C, Le Gall S, Hartmann HJ, Bréret M (1999) Retention of ciliates and flagellates by the oyster Crassostrea gigas in French Atlantic coastal ponds, protists as a trophic link between bacterioplankton and benthic suspension-feeders. Mar Ecol Prog Ser 177:165–175CrossRefGoogle Scholar
  26. Dupuy C, Vaquer A, Lam-Höai T, Rougier C, Mazouni N, Lautier J, Collos Y, Le Gall S (2000) Feeding rate of the oyster Crassostrea gigas in a natural planktonic community of the Mediterranean Thau Lagoon. Mar Ecol Prog Ser 205:171–184CrossRefGoogle Scholar
  27. Facca C, Sfriso A, Ghetti PF (2004) Phytoplankton community composition and distribution in an eutrophic coastal area (Venice lagoon, Italy). Acta Adriat 45(2):163–180Google Scholar
  28. FAO (eds) (2004) The state of world fisheries and aquaculture (SOFIA). FAO, RomeGoogle Scholar
  29. Gilabert J (2001a) Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon, the Mar Menor. J Plankton Res 23(2):207–218CrossRefGoogle Scholar
  30. Gilabert J (2001b) Short-term variability of the planktonic size structure in a Mediterranean coastal lagoon. J Plankton Res 23(2):219–226CrossRefGoogle Scholar
  31. Gorham WT (1988) The energetic and nutritional contribution of glucose and glycine taken up from natural sea water by adult marine mussels. Mar Ecol 9(1):1–14CrossRefGoogle Scholar
  32. Hillebrand H, Dürselen CD, Kirschyel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic macroalgae. J Phycol 35:403–424CrossRefGoogle Scholar
  33. Horner RA (eds) (2002) A taxonomic guide to some common marine phytoplankton. Biopress Limited, EnglandGoogle Scholar
  34. Jeffrey SW, Vesk M, Mantoura RFC (1997) Phytoplankton pigments, windows into the pastures of the sea. Nat Res 33(2):14–29Google Scholar
  35. JGOFS (1994) Protocols for the joint global ocean flux study (JGOFS) core measurements. Report No. 19. Scientific Committee on Oceanic Research, International Council of Scientific Union, BergenGoogle Scholar
  36. Karl DM, Laws EA, Morris P, Williams PJL, Emerson S (2003) Global carbon cycle (communication arising)—metabolic balance of the open sea. Nature 426(6962):32CrossRefGoogle Scholar
  37. Kim KW, Garbary DJ, McLachlan JL (2004) Phytoplankton dynamics in Pomquet Harbour, Nova Scotia, a lagoon in the southern Gulf of St Lawrence. Phycologia 43(3):311–328CrossRefGoogle Scholar
  38. Koutitonsky VG, Tita G (2004) Étude du temps de renouvellement des eaux dans la lagune de Grande-Entrée, Îles-de-la-Madeleine. Rapport de recherche LHE 04-1. Laboratoire d’hydraulique environnementale. ISMER, RimouskiGoogle Scholar
  39. Koutitonsky VG, Navarro N, Booth D (2002) Descriptive physical oceanography of great-entry lagoon, Gulf of St. Lawrence. Estuarine Coast Shelf Sci 54:833–847CrossRefGoogle Scholar
  40. Kreeger DA, Newell RIE (1996) Ingestion and assimilation of carbon from cellulosic bacteria and heterotrophic flagellates by the mussels Geukensia demissa and Mytilus edulis (Bivalvia, Mollusca). Aquat Microb Ecol 11:205–214CrossRefGoogle Scholar
  41. Kreeger DA, Newell RIE (2001) Seasonal utilization of different seston carbon sources by the ribbed mussel, Geukensia demissa (Dillwyn) in a mid-Atlantic salt marsh. J Exp Mar Biol Ecol 260:71–91CrossRefGoogle Scholar
  42. Lam-Hoai T, Rougier C, Lasserre G (1997) Tintinnids and rotifers in a northern Mediterranean coastal lagoon. Structural diversity and function through biomass estimations. Mar Ecol Prog Ser 152(1–3):13–25CrossRefGoogle Scholar
  43. Langdon C, Newell RIE (1990) Utilization of detritus and bacteria as food sources by two bivalve suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar Ecol Prog Ser 58(3):299–310Google Scholar
  44. Le Borgne R, Rodier M (1997) Net zooplankton and the biological pump, a comparison between the oligotrophic and mesotrophic equatorial Pacific. Deep Sea Res II 44(9–10):2003–2023CrossRefGoogle Scholar
  45. Lehane C, Davenport J (2006) A 15-month study of zooplankton ingestion by farmed mussels (Mytilus edulis) in Bantry Bay, Southwest Ireland. Estuarine Coast Shelf Sci 67:645–652CrossRefGoogle Scholar
  46. Loret P, Le Gall S, Dupuy C, Blanchot J, Pastoureaud A, Delesalle B, Caisey X, Jonquieres G (2000) Heterotrophic protists as a trophic link between picocyanobacteria and the pearl oyster Pinctada margaritifera in the Takapoto lagoon (Tuamotu Archipelago, French Polynesia). Aquat Microb Ecol 22(3):215–226CrossRefGoogle Scholar
  47. Lovejoy C, Vincent WF, Frenette J-J, Dodson JJ (1993) Microbial gradients in a turbid estuary: application of a new method for protozoan community analysis. Limnol Oceanogr 38(6):1295–1303CrossRefGoogle Scholar
  48. Lovejoy C, Legendre L, Therriault J-C, Tremblay J-E, Klein B, Ingram RG (2000) Growth and distribution of marine bacteria in relation to nanoplankton community structure. Deep Sea Res II 47(3–4):461–487CrossRefGoogle Scholar
  49. Mayzaud P, Koutitonsky VG, Souchu P, Roy S, Navarro N, Gomez-Reyer E (1992) L’impact de l’activité mytilicole sur la capacité de production du milieu lagunaire des Iles de la Madeleine. INRS-Océanologie Research Report FP707-8-5140. Rimouski, CanadaGoogle Scholar
  50. Mazzola A, Fabiano M, Pusceddu A, Sara G (2001) Particulate organic matter composition in a semi-enclosed marine system. Chem Ecol 17:315–334CrossRefGoogle Scholar
  51. Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579CrossRefGoogle Scholar
  52. Myrand B, Guderley H, Himmelman JH (2000) Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Mar Ecol Prog Ser 197:193–207CrossRefGoogle Scholar
  53. Navarro N (1991) Océanographie physique descriptive de la lagune de la Grande-Entrée, Iles-de-la-Madeleine, Golfe du Saint-Laurent. MSc thesis, Université du Québec à Rimouski, Rimouski, p 143Google Scholar
  54. Niquil N, Pouvreau S, Sakka A, Legendre L, Addessi L, Le Borgne R, Charpy L, Delesalle B (2001) Trophic web and carrying capacity in a pearl oyster farming lagoon (Takapoto, French Polynesia). Aquat Living Resour 14:165–174CrossRefGoogle Scholar
  55. Page HM, Hubbard DM (1987) Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform. Relationships to water temperature and food availability. J Exp Mar Biol Ecol 111(2):159–179CrossRefGoogle Scholar
  56. Parsons TR, Maita Y, Lalli CM (eds) (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, TorontoGoogle Scholar
  57. Pérez-Ruzafa A, Gilabert J, Gutierrez J, Fernandez A, Marcos C, Sabah S (2002) Evidence of a planktonic food web response to changes in nutrient input dynamics in the Mar Menor coastal lagoon, Spain. Hydrobiologia 475(1):359–369CrossRefGoogle Scholar
  58. Roditi HA, Fisher NS, Sanudo-Wilhelmy SA (2000) Uptake of dissolved organic carbon and trace elements by zebra mussels. Nature 407(6800):78–80CrossRefGoogle Scholar
  59. Roy S, Mayzaud P, Souchu P (1991) Environnement physico-chimique et trophique d’un site mytilicole, Île de la Madeleine (Québec), II—Matière particulaire, composition biochimique et productivité primaire. In: Therriault J-C (ed) Le golfe du Saint-Laurent, petit océan ou grand estuaire. Can Spec Publ Fish Aquat Sci 113:219–230Google Scholar
  60. Roy S, Chanut JP, Gosselin M, Sime-Ngando T (1996) Characterization of phytoplankton communities in the lower St. Lawrence Estuary using HPLC-detected pigments and cell microscopy. Mar Ecol Prog Ser 142:55–73CrossRefGoogle Scholar
  61. Sakka A, Legendre L, Gosselin M, Niquil N, Delesalle B (2002) Carbon budget of the planktonic food web in an atoll lagoon (Takapoto, French Polynesia). J Plankton Res 24(4):301–320CrossRefGoogle Scholar
  62. Savenkoff C, Vézina AF, Roy S, Klein B, Lovejoy C, Therriault JC, Legendre L, Rivkin R, Bérubé C, Tremblay JE, Silverberg N (2000) Export of biogenic carbon and structure and dynamics of the pelagic food web in the Gulf of St. Lawrence—Part 1. Seasonal variations. Deep Sea Res II 47:585–607CrossRefGoogle Scholar
  63. Schumann R, Hammer A, Gors S, Schubert H (2005) Winter and spring phytoplankton composition and production in a shallow eutrophic Baltic lagoon. Estuarine Coast Shelf Sci 62(1–2):169–181CrossRefGoogle Scholar
  64. Sévigny J-M, Sinclair M, El-Sabh MI, Poulet S, Coote A (1979) Summer plankton distributions associated with the physical and nutrient properties of the northwestern Gulf of St. Lawrence. J Fish Res Board Can 36(2):187–203CrossRefGoogle Scholar
  65. Sfriso A, Facca C, Ghetti PF (2003) Temporal and spatial changes of macroalgae and phytoplankton in a Mediterranean coastal area, the Venice lagoon as a case study. Mar Environ Res 56(5):617–636CrossRefGoogle Scholar
  66. Sheldon RW, Nival P, Rassoulzadegan F (1986) An experimental investigation of a flagellate-ciliate-copepod food chain with some observations relevant to the linear biomass hypothesis. Limnol Oceanogr 31(1):184–188CrossRefGoogle Scholar
  67. Sherr EB, Sherr BF (1994) Bacterivory and herbivory, key roles of phagotrophic protists in pelagic food web. Microb Ecol 28:233–235CrossRefGoogle Scholar
  68. Sherr EB, Sherr BF, Fallon RD, Newell SY (1986) Small, aloricate ciliates as a major component of the marine heterotrophic nanoplankton. Limnol Oceanogr 31(1):177–183CrossRefGoogle Scholar
  69. Sime-Ngando T, Juniper K, Vézina A (1992) Ciliated protozoan communities over Cobb Seamount. Increase in biomass and spatial patchiness. Mar Ecol Prog Ser 89(1):37–51CrossRefGoogle Scholar
  70. Sime-Ngando T, Gosselin M, Roy S, Chanut J-P (1995) Significance of planktonic ciliated protozoa in the Lower St. Lawrence Estuary, comparison with bacterial, phytoplankton, and particulate organic carbon. Aquat Microb Ecol 6(3):243–258CrossRefGoogle Scholar
  71. Sinclair M (1978) Summer phytoplankton variability in the lower St Lawrence Estuary. J Fish Res Board Can 35(9):1171–1185CrossRefGoogle Scholar
  72. Smaal AC (1991) The ecology and cultivation of mussels: new advances. Aquaculture 94:245–261CrossRefGoogle Scholar
  73. Smetacek V (1981) Annual cycle of protozooplankton in the Kiel Bight. Mar Biol 3(1):1–11CrossRefGoogle Scholar
  74. Souchu P, Mayzaud P (1991) Inorganic nutrients in precipitation over the Magdalen Islands area (Quebec, Canada) and their impact on the primary productivity of the lagoons. Atmos Res 26:543–554CrossRefGoogle Scholar
  75. Souchu P, Mayzaud P, Roy S (1991) Environnement physico-chimique et trophique d’un site mytilicole, Îles de la Madeleine (Québec), I—evolution estivale des composés de l’azote, du phosphore et du silicium. In: Therriault J-C (ed) Le golfe du Saint-Laurent, petit océan ou grand estuaire? Publ spéc can sci halieut aquat 113:209–218Google Scholar
  76. Stoecker DK, Capuzzo JM (1990) Predation on protozoa, its importance to zooplankton. J Plankton Res 12:891–988CrossRefGoogle Scholar
  77. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Bull Fish Res Board Can 167:1–311Google Scholar
  78. Tamigneaux E, Mingelbier M, Klein B, Legendre L (1997) Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment (western Gulf of St. Lawrence, Canada). Mar Ecol Prog Ser 146:231–247CrossRefGoogle Scholar
  79. Therriault JC, Levasseur M (1985) Control of phytoplankton production in the lower St. Lawrence Estuary, light and freshwater runoff. St. Lawrence Estuary. Nat Can (Rev Écol Syst) 112:77–96Google Scholar
  80. Tian RC, Vezina A, Legendre L, Ingram RG, Klein B, Packard T, Roy S, Savenkoff C, Silverberg N, Therriault JC, Tremblay JE (2000) Effects of pelagic food–web interactions and nutrient remineralization on the biogeochemical cycling of carbon: a modeling approach. Deep Sea Res II 47(3–4):637–662CrossRefGoogle Scholar
  81. Tomas CR (eds) (1993) Marine phytoplankton: a guide to naked flagellates and coccolithophorids. Academic, San DiegoGoogle Scholar
  82. Winter JE (1978) A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial aquaculture systems. Aquaculture 13:1–33CrossRefGoogle Scholar
  83. Wong WH, Levinton JS, Twining BS, Fisher N (2003) Assimilation of micro- and mesozooplankton by zebra mussels: a demonstration of the food web link between zooplankton and benthic suspension feeders. Limnol Oceanogr 48(1):308–312CrossRefGoogle Scholar
  84. Zapata M, Rodriguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from marine phytoplankton, a new HPLC method using a reserved phase C8 column and pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29–45CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aurore Trottet
    • 1
  • Suzanne Roy
    • 1
    Email author
  • Eric Tamigneaux
    • 2
  • Connie Lovejoy
    • 3
  1. 1.Institut des Sciences de la MerUniversité du Québec à RimouskiRimouskiCanada
  2. 2.Centre Spécialisé des pêchesGrande-RiviereCanada
  3. 3.Québec Océan, Département de BiologieUniversité LavalSainte-FoyCanada

Personalised recommendations