Marine Biology

, Volume 151, Issue 1, pp 327–341 | Cite as

Population structure of the common sole (Solea solea) in the Northeastern Atlantic and the Mediterranean Sea: revisiting the divide with EPIC markers

  • J. L. Rolland
  • F. Bonhomme
  • F. Lagardère
  • M. Hassan
  • B. GuinandEmail author
Research Article


Spatial and temporal population genetic structures of the common sole, Solea solea, were studied in Northeastern Atlantic and Mediterranean Sea populations, using three polymorphic exon-primed intron-crossing (EPIC) markers. Results demonstrated significant multilocus differentiation among Eastern Mediterranean and a group composed by Western Mediterranean and Atlantic populations (θ = 0.150, < 0.001), but also suggested unrecorded genetic differentiation of the Adriatic Sea population. No pattern of isolation-by-distance was recorded across the range covered by sampling, from the Kattegat to the Aegean Sea. Conversely to genetically structured Mediterranean populations, Atlantic populations ranging from Denmark to Portugal could be considered as representative of the same panmictic unit (θ = 0.009, not significant). Results further demonstrated stability of multilocus genetic structure among temporarily replicated cohort samples [0+, 1+, subadults] from several coastal and estuarine locations from Bay of Biscay, excepted for the amylase locus Am2B3-2 at one location (Pertuis d’Antioche). Despite coherence of such observed patterns of multilocus differentiation with previous allozymic surveys in sole, and with patterns generally obtained for other marine fish species, single-locus results from EPICs indicated divergent coalescence schemes supporting a complex response to ecology and history of sole’s populations. Results stress the use of nuclear genes such as EPIC markers to investigate population structure, but also historical, demographic, and possibly selective processes in marine fishes.


Genetic Differentiation Mediterranean Population Chub Mackerel Atlantic Population Common Sole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to staffs of IFREMER vessels for sampling most of Bay of Biscay populations, with special thanks to Y. Désaunay for Loire and Vilaine samples, and E. Nielsen (Denmark) that provided the Kattegat sample. The Rhône sample was a kind gift of M. Harmelin-Vivien (U. Aix-Marseille 2). Thanks also to F. Volckaert for sharing with us the samples from Venice and Thessaloniki. Many thanks to J.-F. Agnèse, G. Claireaux, J.-D. Durand, F. Lecomte, O. Le Pape, and C. Gilliers for fruitful discussions and inputs. We acknowledge IFREMER and the “Défi Golfe de Gascogne” for funding this research.


  1. Anonymous (2003) Report of the working group on the assessment of southern shelf demersal stocks. ICES CM 2003/ACFM 03Google Scholar
  2. Avise JC (1998) The history and purview of phylogeography: a personal reflection. Mol Ecol 7:371–379CrossRefGoogle Scholar
  3. Bahri-Sfar L, Lemaire C, Ben Hassine OK, Bonhomme F (2000) Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc R Soc Lond B267:929–935CrossRefGoogle Scholar
  4. Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, Reis C, Patarnello T (2003) Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic–Mediterranean divide. J Evol Biol 16:1149–1158CrossRefGoogle Scholar
  5. Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, Palma J, Patarnello T (2005) The Atlantic–Mediterranean transition: discordant genetic patterns in two seabream species, Diplodus puntazzo (Cetti) and Diplodus sargus (L.). Mol Phylogenet Evol 36:523–535CrossRefGoogle Scholar
  6. Barton NH (2000) Genetic hitchhiking. Phil Trans R Soc Lond B Biol Sci 355:1553–1562CrossRefGoogle Scholar
  7. Beardmore JA, Ward RD (1977) Polymorphism, selection, and multilocus heterozygosity in the plaice, Pleuronectes platessa L. Lect Notes Biomath 19:207–221CrossRefGoogle Scholar
  8. Beaumont M (2005) Adaptation and speciation: what can F st tell us? Trends Ecol Evol 20:435–440CrossRefGoogle Scholar
  9. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2001) Genetix v.4.03, Logiciel sous WindowsTM pour la Génétique des Populations. Laboratoire Génome et Population, Université Montpellier 2, MontpellierGoogle Scholar
  10. Blanquer A, Alayse JP, Berrada-Rkhami O, Berrebi P (1992) Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichthyes, Pleuronectiformes, Scophthalmidae) throughout their range in Europe. J Fish Biol 41:725–736CrossRefGoogle Scholar
  11. Borsa P, Naciri M, Bahri L, Chikhi L, Garcia de Leon FJ, Kotoulas G, Bonhomme F (1997a) Zoogéographie infra-spécifique de la mer Méditerranée: analyse des données génétiques populationnelles sur seize espèces atlanto-méditerranéennes (Poissons et Invertébrés). Vie Milieu 47:295–305Google Scholar
  12. Borsa P, Blanquer A, Berrebi P (1997b) Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographic scales. Mar Biol 129:233–246CrossRefGoogle Scholar
  13. Bouneau L, Lardier G, Fischer C, Ronsin M, Weissenbach J, Bernot A (2003) Analysis of 148kb of genomic DNA of Tetraodon nigroviridis covering an amylase gene family. DNA Seq 14:1–13CrossRefGoogle Scholar
  14. Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10:1179–1196CrossRefGoogle Scholar
  15. Cabral HN, Castro F, Linhares D, Alexandrino P (2003) Genetic differentiation of Solea solea (Linnaeus, 1758) and S. senegalensis Kaup, 1858, (Pisces: Pleuronectiformes) from several estuarine systems of the Portuguese coast. Sci Mar 67:43–52CrossRefGoogle Scholar
  16. Carlsson J, McDowell JR, Díaz-Jaimes P, Carlsson JEL, Boles SV, Gold JR, Graves JE (2004) Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol Ecol 13:3345–3356CrossRefGoogle Scholar
  17. Castillo AGF, Alvarez P, Garcia-Vazquez E (2005) Population structure of Merluccius merluccius along the Iberian Peninsula coast. ICES J Mar Sci 62:1699–1704CrossRefGoogle Scholar
  18. Chapman RW, Ball AO, Mash LR (2002) Spatial homogeneity and temporal heterogeneity of red drum (Sciaenops ocellatus) microsatellites: effective population sizes and management implications. Mar Biotechnol 4:589–603CrossRefGoogle Scholar
  19. Charrier G, Chenel T, Durand JD, Girard M, Quiniou L, Laroche J (2006) Discrepancies in phylogeographical patterns of two European anglerfishes (Lophius budegassa and Lophius piscatorius). Mol Phylogenet Evol 38:742–754CrossRefGoogle Scholar
  20. Cimmaruta R, Bondanelli P, Nascetti G (2005) Genetic structure and environmental heterogeneity in the European hake (Merluccius merluccius). Mol Ecol 14:2577–2591CrossRefGoogle Scholar
  21. Dannewitz J, Maes GE, Johansson L, Wickstrom H, Volckaert FAM, Jarvï T (2005) Panmixia in the European eel: a matter of time… Proc R Soc Lond B272:1129–1137CrossRefGoogle Scholar
  22. De Innocentiis S, Sola L, Cataudella S, Bentzen P (2001) Allozyme and microsatellite provide discordant estimates of population differentiation in the endangered dusky grouper (Epinephelus marginatus) within the Mediterranean Sea. Mol Ecol 10:2163–2175CrossRefGoogle Scholar
  23. Dorel D, Koutsikopoulos C, Désaunay Y, Marchand J (1991) Seasonal distribution of young sole (Solea solea (L.) in the nursery ground of the Bay of Vilaine (Northern Bay of Biscay). Neth J Sea Res 27:297–306CrossRefGoogle Scholar
  24. Durand JD, Collet A, Chow S, Guinand B, Borsa P (2005) Nuclear and mitochondrial DNA markers indicate unidirectional gene flow of Indo-Pacific to Atlantic bigeye tuna (Thunnus obesus) populations, and their admixture off southern Africa. Mar Biol 147:313–322CrossRefGoogle Scholar
  25. Ely B, Stoner DS, Alavarado-Bremer JR, Dean JM, Addis P, Cau A, Thelen EJ, Jones WJ, Black DE, Smith L, Scott K, Naseri I, Quattro JM (2002) Analyses of IdhA gene and mitochondrial control region of Atlantic northern bluefin tuna populations. Mar Biotechnol 4:583–588CrossRefGoogle Scholar
  26. Exadactylos A, Geffen AJ, Thorpe JP (1998) Population structure of the Dover sole, Solea solea L., in a background of high gene flow. Neth J Sea Res 40:117–129CrossRefGoogle Scholar
  27. Exadactylos A, Geffen AJ, Panagiotaki P, Thorpe JP (2003) Population structure of Dover sole Solea solea: RAPD and allozyme data indicate divergence in European stocks. Mar Ecol Prog Ser 246:253–264CrossRefGoogle Scholar
  28. Felsenstein J (1993) Phylip: phylogeny inference package, v. 3.5c. Department of Genetics, University of Washington, SeattleGoogle Scholar
  29. Garoia F, Guarniero I, Piccinetti C, Tinti F (2004) First microsatellite loci of red mullet (Mullus barbatus) and their applications to genetic structure analysis of Adriatic shared stock. Mar Biotechnol 6:446–452CrossRefGoogle Scholar
  30. Garoia F, Marzola S, Guarniero I, Trentini M, Tinti F (2006) Isolation of polymorphic DNA microsatellites in the common sole, Solea vulgaris. Mol Ecol Notes 6:144–146CrossRefGoogle Scholar
  31. Guarniero I, Franzellitti S, Ungaro N, Tommasini S, Piccinetti C, Tinti F (2002) Control region haplotype variation in the central Mediterranean common sole indicates geographical isolation and population structuring in Italian stocks. J Fish Biol 60:1459–1474CrossRefGoogle Scholar
  32. Gysels ES, Hellemans B, Patarnello T, Volckaert FAM (2004) Current and historic gene flow of the sand goby Pomatoschistus minutes on the European Continental Shelf and in the Mediterranean Sea. Biol J Linn Soc 83:561–576CrossRefGoogle Scholar
  33. Hare MP (2001) Nuclear genes phylogeography. Trends Ecol Evol 16:700–706CrossRefGoogle Scholar
  34. Hassan M, Lemaire C, Fauvelot C, Bonhomme F (2002) Seventeen new exon-primed intron-crossing polymerase chain reaction amplifiable introns in fish. Mol Ecol Notes 2:334–340CrossRefGoogle Scholar
  35. Hedgecock D (1994) Temporal and spatial genetic-structure of marine animal populations in the California current. Calif Coop Ocean Fish Investig Rep 35:73–81Google Scholar
  36. Hickerson MJ, Cunningham CW (2005) Contrasting quaternary histories in an ecologically divergent sister pair of low-dispersing intertidal fish (Xiphister) revealed by multilocus DNA analysis. Evolution 59:344–360CrossRefGoogle Scholar
  37. Hoarau G, Rijnsdorp AD, van der Veer HW, Stam WT, Olsen JL (2002) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large scale spatial and temporal homogeneity. Mol Ecol 11:1165–1176CrossRefGoogle Scholar
  38. Hoarau G, Piquet AMT, van der Veer HW, Rijnsdorp AD, Stam WT, Olsen JL (2004) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. J Sea Res 51:183–190CrossRefGoogle Scholar
  39. Hoarau G, Boon E, Jongma DN, Ferber S, Palsson J, van der Veer IIW, Rijnsdorp AD, Stam WT, Olsen JL (2005) Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proc R Soc Lond B272:497–504Google Scholar
  40. Hutchinson WF, Carvalho GR, Rogers SI (2001) Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Mar Ecol Prog Ser 223:251–260CrossRefGoogle Scholar
  41. Johnson MS, Black R (1982) Chaotic patchiness in an intertidal limpet, Siphonaria sp. Mar Biol 70:157–164CrossRefGoogle Scholar
  42. Karaiskou N, Triantafyllidis A, Triantaphyllidis C (2004) Shallow genetic structure of three species of the genus Trachurus in European waters. Mar Ecol Prog Ser 281:193–205CrossRefGoogle Scholar
  43. Kenchington E, Heino M, Nielsen EE (2003) Managing marine genetic diversity: time for action? ICES J Mar Sci 60:1172–1176CrossRefGoogle Scholar
  44. Knutsen H, André C, Jorde PE, Skogen MD, Thuròczy E, Stenseth NC (2004) Transport of North Sea cod larvae into the Skagerrak coastal populations. Proc R Soc Lond B271:1337–1344CrossRefGoogle Scholar
  45. Kotoulas G, Bonhomme F, Borsa P (1995) Genetic structure of the common sole Solea vulgaris at different geographic scales. Mar Biol 122:361–375CrossRefGoogle Scholar
  46. Koutsikopoulos C, Fortier L, Gagné J (1991) Cross-shelf dispersion of Dover sole eggs and larvae (Solea solea) in Biscay Bay and recruitment to inshore nurseries. J Plankton Res 13:923–945CrossRefGoogle Scholar
  47. Koutsikopoulos C, Dorel D, Désaunay Y (1995) Movement of sole Solea solea (L.) in the Bay of Biscay: coastal environment and spawning migration. J Mar Biol Assoc UK 75:109–126CrossRefGoogle Scholar
  48. Launey S, Ledu C, Boudry P, Bonhomme F, Naciri-Graven H (2002) Geographic structure in the European flat oyster (Ostrea edulis L.) as revealed by microsatellite polymorphism. J Hered 93:331–338CrossRefGoogle Scholar
  49. Le Pape O, Chauvet F, Mahévas S, Lazure P, Guérault D, Désaunay Y (2003) Quantitative description of habitat suitability for the juvenile common sole (Solea solea, L.) in the Bay of Biscay (France) and the contribution of different habitats to the adult population. J Sea Res 50:139–149CrossRefGoogle Scholar
  50. Léauté JP, Caill-Milly N (2003) Les petites pêches côtières et estuariennes françaises de sud du Golfe de Gascogne. Final Report PECOSUD EC/DG Fish (DG XIV) No. 99/024, IFREMER, DRV/RH/DT/03-01Google Scholar
  51. Lemaire C, Versini JJ, Bonhomme F (2005) Maintenance of genetic differentiation across a transition zone in the sea: discordance between nuclear and cytoplasmic markers. J Evol Biol 18:70–80CrossRefGoogle Scholar
  52. Maes GE, Pujolar JM, Hellemans B, Volckaert FAM (2006) Evidence for isolation by time in the European eel (Anguilla anguilla L.). Mol Ecol 15:2095–2107CrossRefGoogle Scholar
  53. Magoulas A, Castilho R, Caetano S, Marcato S, Patarnello T (2006) Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol Phylogenet Evol. DOI 10.1016/j.ympev.2006.01.016Google Scholar
  54. Marchand J, Tanguy A, Laroche J, Quiniou L, Moraga D (2003) Responses of European flounder Platichthys flesus populations to contamination in different estuaries along the Atlantic coast of France. Mar Ecol Prog Ser 260:273–284CrossRefGoogle Scholar
  55. Mariani S, Hutchinson WF, Hatfield EMC, Ruzzante DE, Simmonds EJ, Dahlgren TG, André C, Brigham J, Torstensen E, Carvalho GR (2005) North Sea herring population structure as revealed by microsatellite analysis. Mar Ecol Prog Ser 303:245–257CrossRefGoogle Scholar
  56. Naciri M, Lemaire C, Borsa P, Bonhomme F (1999) Genetic study of the Atlantic/Mediterranean transition in sea bass (Dicentrarchus labrax). J Hered 90:591–596CrossRefGoogle Scholar
  57. Nakadate M, Viñas J, Corriero A, Clarke S, Suzuki M, Chow S (2005) Genetic isolation between Atlantic and Mediterranean albacore populations inferred from mitochondrial and nuclear DNA markers. J Fish Biol 66:1545–1557CrossRefGoogle Scholar
  58. Nesbø CL, Rueness EK, Iversen SA, Skagen DW, Jakobsen KS (2000) Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks. Proc R Soc Lond B267:281–292CrossRefGoogle Scholar
  59. Nielsen EE, Hansen MM, Ruzzante DE, Meldrup D, Grønkjaer P (2003) Evidence of a hybrid-zone in Atlantic cod (Gadus morhua) in the Baltic and the Danish Belt Sea, revealed by individual admixture analysis. Mol Ecol 12:1497–1508CrossRefGoogle Scholar
  60. Nielsen EE, Nielsen PH, Meldrup D, Hansen MM (2004) Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol Ecol 13:585–595CrossRefGoogle Scholar
  61. Olsen JB, Habicht C, Reynolds J, Seeb JE (2004) Moderate and highly polymorphic microsatellites provide discordant estimates of population divergence in sockeye salmon (Oncorhynchus nerka). Environ Biol Fish 69:261–273CrossRefGoogle Scholar
  62. O’Reilly PT, Canino MF, Bailey KM, Bentzen P (2004) Inverse relationship between F ST and microsatellite polymorphism in the marine fish, walleye pollock (Theragra chalcogramma): implications for resolving weak population structure. Mol Ecol 13:1799–1814CrossRefGoogle Scholar
  63. Palumbi SR, Baker CS (1994) Contrasting population structure from nuclear intron sequences and mtDNA in humpback whales. Mol Biol Evol 11:426–435PubMedGoogle Scholar
  64. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358Google Scholar
  65. Pinheiro A, Teixeira CM, Rego AM, Marques JF, Cabral HM (2005) Genetic and morphological variation of Solea lascaris (Risso, 1810) along the Portuguese coast. Fish Res 73:67–78CrossRefGoogle Scholar
  66. Planes S, Lenfant P (2002) Temporal change in the genetic structure between and within cohorts of a marine fish, Diplodus sargus, induced by a large variance in individual reproductive success. Mol Ecol 11:1515–1524CrossRefGoogle Scholar
  67. Planes S, Romans P (2004) Evidence of genetic selection for growth in new recruits of a marine fish. Mol Ecol 13:2049–2060CrossRefGoogle Scholar
  68. Pujolar JM, Roldán MI, Pla C (2001) Allozyme differentiation of bonito in the Mediterranean sea. J Fish Biol 59:169–174CrossRefGoogle Scholar
  69. Pujolar JM, Maes GE, Volckaert FAM (2006) Genetic patchiness among recruits in the European eel, Anguilla anguilla. Mar Ecol Progr Ser 307:209–217CrossRefGoogle Scholar
  70. Quéro JC, Desoutter M, Lagardère F (1986) Soleidae. In: Whitehead PJP, Bauchot ML, Hureau JC, Tortonese E (eds) Fishes of the north-eastern Atlantic and Mediterranean, vol. 3. Unesco, Paris, pp 1308–1324Google Scholar
  71. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the co-ancestry coefficient—basis for a short term genetic distance. Genetics 105:767–779PubMedPubMedCentralGoogle Scholar
  72. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228Google Scholar
  73. Ruzzante DE, Taggart CT, Cook D (1996) Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation; cohort contribution and genetic stability. Can J Fish Aquat Sci 53:2695–2705CrossRefGoogle Scholar
  74. Ruzzante DE, Mariani S, Bekkevold D et al (2006) Biocomplexity in a highly migratory pelagic fish, Atlantic herring. Proc R Soc Lond B273:1459–1464CrossRefGoogle Scholar
  75. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  76. Sartor P, Sbrana M, Ungaro N, Marano CA, Piccinetti C, Manfrin GP (2002) Distribution and abundance of Citharus linguatula, Lepidorhombus boscii, and Solea vulgaris (Osteichthyes: Pleuronectiformes) in the Mediterranean sea. Sci Mar 66(Suppl. 2):83–102CrossRefGoogle Scholar
  77. Schlötterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 160:753–763PubMedPubMedCentralGoogle Scholar
  78. Steffanni S, Thorley JH (2003) Mitochondrial DNA phylogeography reveals the existence of an Evolutionarily Significant Unit of the sand goby Pomatoschistus minutus in the Adriatic (Eastern Mediterranean). Mol Phylogenet Evol 28:601–609CrossRefGoogle Scholar
  79. Suzuki N, Nishida M, Yoseda K, ÜstÜndağ C, Şahin T, Amaoka K (2004) Phylogeographic relationships within the Mediterranean turbot inferred by mitochondrial DNA haplotype variation. J Fish Biol 65:580–585CrossRefGoogle Scholar
  80. Tinti F, Di Nunno C, Guarniero I, Talenti M, Tommasini S, Fabbri E, Piccinetti C (2002) Mitochondrial DNA sequence variation suggests the lack of genetic heterogeneity in the Adriatic and Ionian stocks of Sardina pilchardus. Mar Biotech 4:163–172CrossRefGoogle Scholar
  81. Viñas J, Alvarado Bremer J, Pla C (2004) Phylogeography of the Atlantic bonito (Sarda sarda) in the northern Mediterranean: the combined effects of historical vicariance, population expansion, secondary invasion, and isolation by distance. Mol Phylogenet Evol 33:32–42CrossRefGoogle Scholar
  82. Weir BS (1979) Inference about linkage disequilibrium. Biometrics 31:235–254CrossRefGoogle Scholar
  83. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370Google Scholar
  84. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354CrossRefGoogle Scholar
  85. Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol 13:1785–1798CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. L. Rolland
    • 1
  • F. Bonhomme
    • 1
  • F. Lagardère
    • 2
  • M. Hassan
    • 1
  • B. Guinand
    • 1
    Email author
  1. 1.Laboratoire Génome, Populations, Interactions, AdaptationUniversité Montpellier II-IFREMER-CNRS UMR 5171SèteFrance
  2. 2.Centre de Recherche sur les Ecosystèmes Marins et Aquacoles de L’Houmeau (CREMA)CNRS-IFREMERL’HoumeauFrance

Personalised recommendations