Marine Biology

, Volume 151, Issue 1, pp 71–83 | Cite as

Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea

  • Sylvie TambuttéEmail author
  • Eric Tambutté
  • Didier Zoccola
  • Natacha Caminiti
  • Severine Lotto
  • Aurélie Moya
  • Denis Allemand
  • Jess Adkins
Research Article


In zooxanthellate corals, the photosynthetic fixation of carbon dioxide and the precipitation of CaCO3 are intimately linked both spatially and temporally making it difficult to study carbon transport mechanisms involved in each pathway. When studying Tubastrea aurea, a coral devoid of zooxanthellae, we can focus on carbon transport mechanisms involved only in the calcification process. We performed this study to characterize T. aurea carbonic anhydrase and to determine its role in the calcification process. We have shown that inhibition of tissular carbonic anhydrase activity affects the calcification rate. We have measured the activity of this enzyme both in the tissues and in the organix matrix extracted from the skeleton. Our results indicate that organic matrix proteins, which are synthesized by the calcifying tissues, are not only structural proteins, but they also play a crucial catalytic role by eliminating the kinetic barrier to interconversion of inorganic carbon at the calcification site. By immunochemistry we have demonstrated the presence of a protein both in the tissues and in the organic matrix, which shares common features with prokaryotic carbonic anhydrases.


Carbonic anhydrase Carbon Calcification Coral Biomineralization Organic matrix 



Carbonic anhydrase


Bovine serum albumin


Dissolved inorganic carbon






Filtered seawater


Phosphate buffered saline




Protease inhibitor cocktail


Room temperature


Soluble organic matrix


Sodium dodecyl sulphate


Tris buffered saline


Dissolved inorganic carbon



We thank Prof. François Morel from Princeton University and Mak Saïto from the Woods Hole Oceanographic Institution for providing the antibody, anti-β-carbonic anhydrase from Synecchococcus sp. This study was conducted as part of the Centre Scientifique de Monaco 2000–2004 research program. It was supported by the Government of the Principality of Monaco and by the California Institute of Technology, USA.


  1. Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67:1129–1143CrossRefGoogle Scholar
  2. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426CrossRefGoogle Scholar
  3. Allemand D, Grillo M-C (1992) Biocalcification mechanisms in gorgonians. 45Ca uptake and deposition by the mediterranean red coral Corallium rubrum. J Exp Zool 292:237–246CrossRefGoogle Scholar
  4. Borelli G, Mayer-Gostan N, Merle P-L, de Pontual H, Boeuf G, Allemand D, Payan P (2003) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcified Tissue Int 72:717–725CrossRefGoogle Scholar
  5. Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225Google Scholar
  6. Constantz BR. (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157CrossRefGoogle Scholar
  7. Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258CrossRefGoogle Scholar
  8. Cox EH, McLendon GL, Morel F, Lane T, Prince RC, Pickering IJ, George GN (2000) The active site of Thalassiosira weissflogii carbonic anhydrases 1. Biochem 39:12128–12130CrossRefGoogle Scholar
  9. Cuif JP, Dauphin Y, Doucet J, Salome M, Susini J (2003) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67:75–83CrossRefGoogle Scholar
  10. Cuif JP, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88:582–592CrossRefGoogle Scholar
  11. Dauphin Y (2001) Comparative studies of skeletal soluble matrices from some Scleractinian corals and Molluscs. Int J Biol Macromol 28:293–304CrossRefPubMedGoogle Scholar
  12. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69CrossRefGoogle Scholar
  13. Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457PubMedGoogle Scholar
  14. Gautret P, Cuif JP, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36:189–194CrossRefGoogle Scholar
  15. Gautret P, Cuif JP, Stolarski J (2000) Organic components of the skeleton of scleractinian corals—evidence from in situ acridine orange staining. Acta Palaeontol Pol 45:107–118Google Scholar
  16. Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull Mar Biol Lab Woods Hole 116:59–75CrossRefGoogle Scholar
  17. Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chembiochem 4:522–529CrossRefPubMedGoogle Scholar
  18. Heatfield BM (1970) Calcification in echinoderms: effects of temperature and acetazolamide on incorporation of calcium-45 in vitro by regenerating spines of Strongylocentrotus purpuratus. Biol Bull 139:151–163CrossRefPubMedGoogle Scholar
  19. Hewett-Emmet D, Tashian RE (1996) Functional diversity, conservation and convergence in the evolution of the α-,β-,γ,-carbonic anhydrase gene families. Mol Phylogen Evol 5:50–77CrossRefGoogle Scholar
  20. Isa Y, Yamazato K (1984) The distribution of carbonic anhydrase in a staghorn coral Acropora hebes (Dana). Galaxea 3:25–36Google Scholar
  21. Jones WC, Ledger PW (1986) The effect of acetazolamide and various concentrations of calcium on spicule secretion in the calcareous sponge Sycon ciliatum. Comp Biochem Physiol 84A:149–158CrossRefGoogle Scholar
  22. Kingsley RJ, Watabe N (1987) Role of carbonic anhydrase in calcification in the gorgonian Leptogorgia virgulata. J Exp Zool 241:171–180CrossRefGoogle Scholar
  23. Kono M, Hayashi N, Samata T (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Comm 269:213–218CrossRefPubMedGoogle Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head bacteriophage T4. Nature 227:680–685CrossRefGoogle Scholar
  25. Lane TW, Morel F (2000) A biological function for cadmium in marine diatoms. PNAS 97(9):4627–4631CrossRefPubMedGoogle Scholar
  26. Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel MM (2005) A cadmium enzyme from a marine diatom. Nature 435(7038):42CrossRefGoogle Scholar
  27. Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004). Nitrogen-fixing cyanobacteria in corals. Science 305:997–1000CrossRefPubMedGoogle Scholar
  28. Lucas JM, Knapp LW (1996) Biochemical characterization of purified carbonic anhydrase from the octocoral Leptogorgia virgulata. Mar Biol 126:471–477CrossRefGoogle Scholar
  29. Lucas JM, Knapp LW (1997) A physiological evaluation of carbon sources for calcification in the octocoral Leptogorgia virgulata (Lamarck). J Exp Biol 200:2653–2662PubMedGoogle Scholar
  30. Marshall AT (1996) Calcification in hermatypic and ahermatypic corals. Science 271:637–639CrossRefGoogle Scholar
  31. Mitsunaga K, Akasaka K, Shimada H, Fujino Y, Yasumasu I, Numandi H (1986) Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules. Cell Differ 18:257–262CrossRefPubMedGoogle Scholar
  32. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci USA 93:9657–9660CrossRefPubMedGoogle Scholar
  33. Nys Y, de Laage X (1984) Effects of suppression of egg shell calcification and of 1,25 (OH)2D3 on Mg2+, Ca2+ and Mg2+ HCO3 ATPase, alkaline phosphatase, carbonic anhydrase and CaBP levels. II. The laying intestine. Comp Biochem Physiol 78A:839–844CrossRefGoogle Scholar
  34. Payan P, Kossmann H, Watrin A, Mayer-Gostan N, Boeuf G (1997) Ionic composition of endolymph in teleosts: origin and importance of endolymph alkalinity. J Exp Biol 200:1905–1912PubMedGoogle Scholar
  35. Pearse VB (1970) Incorporation of metabolic CO2 into coral skeleton. Nature 228:383CrossRefPubMedGoogle Scholar
  36. Puverel S, Tambutté E, Zoccola D, Domart-Coulon I, Bouchot A, Lotto S, Allemand D, Tambutté S (2005) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24:149–156CrossRefGoogle Scholar
  37. Rahman A, Isa Y, Uehara T (2005). Proteins of calcified endoskeleton. II. partial amino acid sequences of endoskeletal proteins and the characterization of proteinaceous organic matrix of spicules from the alcyonarian, Synularia polydactyla. Proteomics 5:1–9CrossRefGoogle Scholar
  38. Rahman A, Isa Y, Uehara T (2006). Studies of two closely related species of Octocorallians: biochemical and molecular characteristics of the organic matrices of endoskeletal sclerites. Mar Biotech 8:415–424CrossRefGoogle Scholar
  39. Richier S, Merle PL, Furla P, Pigozzi D, Sola F, Allemand D (2003) Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. Biochim Biophys Acta 1621(1):84–91CrossRefPubMedGoogle Scholar
  40. Roer RD (1980) Mechanisms of resorption and deposition of calcium in the carapace of the crab Carcinus maenas. J Exp Biol 88:205–218Google Scholar
  41. Sasakura Y, Nakashima K, Awazu S, Matsuoka T, Nakayama A, Azuma J, Satoh N (2005) Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthetase in the ascidian Ciona intestinalis. PNAS 102(42):15134–15139CrossRefPubMedGoogle Scholar
  42. Sikes CS, Roer RD, Wilbur KM (1980) Photosynthesis and cocolith formation: Inorganic carbon sources and net inorganic reaction of deposition. Limnol Oceanogr 25:248–261CrossRefGoogle Scholar
  43. Tambutté E, Allemand D, Bourge I, Gattuso J-P, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459CrossRefGoogle Scholar
  44. Tambutté É, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041Google Scholar
  45. Technau U, Rudd S, Maxwell P, Gordon PMK, Saina M, Grasso LC, Hayward DC, Sensen CW, Saint R, Holstein TW, Ball EE, Miller D (2005) Maintenance and ancestral complexity and non-metazoan genes in two basal cnidarians. Trends Genet 21(12):633–639CrossRefPubMedGoogle Scholar
  46. Tohse H, Ando H, Mugiya Y (2004) Biochemical properties and immunohistochemical localization of carbonic anhydrase in the sacculus of the inner ear in the salmon Oncorhyncus masou. Comp Biochem Physiol 137A:87–94CrossRefGoogle Scholar
  47. Tohse H, Mugiya Y (2001) Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endolymph and otoliths in salmon Oncorhynchus masou. Comp Biochem Physiol 128A:177–184CrossRefGoogle Scholar
  48. Waheed A, Zhu XL, Sly WS (1992) Membrane-associated carbonic anhydrase from rat lung. J Biol Chem 267:3308–3311PubMedGoogle Scholar
  49. Watanabe T, Fukuda I, China K, Isa Y (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Physiol 136B:767–774CrossRefGoogle Scholar
  50. Weiner S (1984) Organization of organic matrix components in mineralized tissues. Amer Zool 24:945–951CrossRefGoogle Scholar
  51. Weis VM, Reynolds WS (1999) Carbonic anhydrase expression and synthesis in the sea anemone Anthopleura elegantissima are enhanced by the presence of dinoflagellate symbionts. Physiol Biochem Zool 72:307–316CrossRefPubMedGoogle Scholar
  52. Weis VM, Smith GJ, Muscatine L (1989) A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic anhydrase. Mar Biol 100:195–202CrossRefGoogle Scholar
  53. Wheeler AP, Sikes CS (1984) Regulation of carbonate calcification by organic matrix. Am Zool 24:933–944CrossRefGoogle Scholar
  54. Wilbur KM, Jodrey LH (1955) Studies on shell formation. V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol Bull 108:359–365CrossRefGoogle Scholar
  55. Wilson JM, Randall DJ, Vogl AW, Harris J, Sly WS, Iwama GK (2000) Branchial carbonic anhydrase is present in the dogfish, Squalus acanthias. Fish Physiol Biochem 22:329–336CrossRefGoogle Scholar
  56. Wright OP, Marshall AT (1991) Calcium transport across the isolated oral epithelium of scleractinian corals. Coral Reefs 10:37–40CrossRefGoogle Scholar
  57. Yule AB, Crisp DJ, Cotton IH (1982) The action of acetazolamide on calcification in juvenile Balanus balanoides. Mar Biol Lett 3:273–288Google Scholar
  58. Zoccola D, Tambutté E, Kulhanek E, Puverel S, Scimeca J-C, Allemand D Tambutté S (2004). Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochim Biophys Acta 1663:117–126CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sylvie Tambutté
    • 1
    Email author
  • Eric Tambutté
    • 1
  • Didier Zoccola
    • 1
  • Natacha Caminiti
    • 1
  • Severine Lotto
    • 1
  • Aurélie Moya
    • 1
  • Denis Allemand
    • 1
    • 3
  • Jess Adkins
    • 2
  1. 1.Centre Scientifique de Monacoav. Saint MartinMonaco
  2. 2.Department of Geology and Planetary SciencesPasadenaUSA
  3. 3.UMR 1112 UNSA-INRA Faculté des SciencesNice Cedex 2France

Personalised recommendations