Marine Biology

, Volume 150, Issue 2, pp 197–211 | Cite as

Subcellular distribution of zinc and cadmium in the hepatopancreas and gills of the decapod crustacean Penaeus indicus

  • G. Nunez-Nogueira
  • C. Mouneyrac
  • J. C. Amiard
  • P. S. RainbowEmail author
Research Article


The decapod crustacean Penaeus indicus accumulated Cd and Zn in different subcellular compartments of hepatopancreas and gill cells. Most of the Cd and part of the Zn accumulates within the soluble fraction of the cells, while the remainder of the Zn is found in insoluble inclusions, associated with P, Ca, Mg and Si in B-, F- and R-cells in the hepatopancreas, and haemocytes, nephrocytes and epithelial cells in the gills. No presence of Cd was observed in metal-rich inclusions in any cell analysed. Metallothionein-like proteins (MTLP), analysed by differential pulse polarography, were present in the hepatopancreas (12–18 mg g−1) and gills (7–8 mg g−1) of metal-exposed prawns. Binding to MTLP is the detoxification mechanism for cadmium, while the detoxification of zinc involves both binding to MTLP and incorporation into insoluble metal-rich inclusions.


Decapod Crustacean Zinc Deposit Moult Cycle Digestive Vacuole Basal Lamella 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by funding to GN-N from CONACyT and SEP-Mexico, and by funding to Dr. C. Amiard-Triquet (Service d’Ecotoxicologie, ISOMer, Nantes, France). It is a pleasure to acknowledge the considerable technical support of Keith Pell (Queen Mary College, University of London), and Dr. Alex Ball (The Natural History Museum, London), and for training and advice on the X-ray microanalysis and TEM analysis, respectively. We are also grateful for the technical support provided by CEREA-UCO (Angers, France).


  1. Al-Mohanna SY, Nott JA (1985) The accumulation of metals in the hepatopancreas of the shrimp Penaeus semisulcatus de Haan (Crustacea: Decapoda) during the moult cycle. In: Halwagy R, Clayton D, Behbehani M (eds) Marine environment and pollution. University of Kuwait, Kuwait pp 195–207Google Scholar
  2. Al-Mohanna SY, Nott JA (1987a) R-cells and the digestive cycle in Penaeus semisulcatus (Crustacea: Decapoda). Mar Biol 95:129–137CrossRefGoogle Scholar
  3. Al-Mohanna SY, Nott JA (1987b) M-’Midget’ cells and moult cycle in Penaeus semisulcatus (Crustacea: Decapoda). J Mar Biol Assoc UK 67:803–813CrossRefGoogle Scholar
  4. Al-Mohanna SY, Nott JA (1989) Functional cytology of the hepatopancreas of Penaeus semisulcatus (Crustacea: Decapoda) during the moult cycle. Mar Biol 101:535–544CrossRefGoogle Scholar
  5. Amiard JC, Pineau A, Boiteau H, Metayer C, Amiard-Triquet C (1987) Application of atomic absorption spectrophotometry using Zeeman effect to the determination of eight trace elements (Ag, Cd, Cr, Cu, Mn, Ni, Pb, and Se) in biological materials. Water Res 21:693–697CrossRefGoogle Scholar
  6. Andersen JT, Baatrup E (1988) Ultrastructural localization of mercury accumulation in the gills, hepatopancreas, midgut, and antennal glands of the brown shrimp, Crangon crangon. Aquat Toxicol 13:309–324CrossRefGoogle Scholar
  7. Arruda-Freire C, Campbell-McNamara J (1995) Fine structure of the gills of the fresh-water shrimp Macrobrachium olfersii (Decapoda): effect of acclimation to high salinity medium and evidence for involvement of the lamellar septum in ion uptake. J Crust Biol 15:103–116CrossRefGoogle Scholar
  8. Bryan GW (1976) Some aspects of heavy metal tolerance in aquatic organisms. In: Lockwood APM (eds) Effects of pollutants on aquatic organisms. Cambridge University Press, London pp 7–34Google Scholar
  9. Bryan GW, Langston WJ, Hummerstone LG, Burt GR (1985) A guide to the assessment of heavy-metal contamination in estuaries using biological indicators. Occ Publ Mar Biol Assoc UK 4:1–92Google Scholar
  10. Caceci T, Neck KF, Lewis DH, Sis RF (1988) Ultrastructure of the hepatopancreas of the Pacific white shrimp, Penaeus vannamei (Crustacea: Decapoda). J Mar Biol Assoc UK 68:323–337CrossRefGoogle Scholar
  11. Canli M, Stagg RM, Rodger G (1997) The induction of metallothionein in tissues of the Norway lobster Nephrops norvergicus following exposure to cadmium, copper and zinc: the relationship between metallothionein and the metal. Environ Pollut 96(3):343–350CrossRefGoogle Scholar
  12. Chavez-Crooker P, Pozo P, Castro H, Dice MS, Boutet I, Tanguy A, Moraga D, Ahearn GA, (2003) Cellular localization of calcium, heavy metals, and metallothionein in lobster (Homarus americanus) hepatopancreas. Comp Biochem Physiol C 136:213–224Google Scholar
  13. Campbell MJ, Radecki Z, Trinkl A, Burns KI (2000) Report on the intercomparison runs for the determination of trace and minor elements in cabbage material. Rep. IAEA/AL/123, IAEA-359, ViennaGoogle Scholar
  14. Coquery M, Horvat M (1996) The analytical performance study for the MED POL area: determination of trace elements in marine sediments SD-MEDPOL-1/TM and fish homogenate MA-MEDPOL-1/TM. Report IAEA, MonacoGoogle Scholar
  15. Carpene E (1993) Metallothionein in marine molluscs. In: Dallinger R, Rainbow PS (eds) Ecotoxicology of metals invertebrates. Lewis Publishers, Boca Raton pp 55–72Google Scholar
  16. Chinni S, Yallapragada PR (2000) Toxicity of copper, cadmium, zinc and lead to Penaeus indicus postlarvae: effects of individual metals. J Environ Biol 21:255–258Google Scholar
  17. Correa-Junior JD, Allodi S, Amado-Filho GM, Farina M (2000) Zinc accumulation in phosphate granules of Ucides cordatus hepatopancreas. Braz J Med Biol Res 33:217–221CrossRefGoogle Scholar
  18. Dall W, Moriarty DJ (1983) Functional aspects of nutrition and digestion. In: Mantel LH (eds) The biology of Crustacea, internal anatomy and physiological regulation. Academic Inc. NewYork pp 215–261CrossRefGoogle Scholar
  19. Davis LE, Burnett AL (1964) A study of growth and cell differentiation in the hepatopancreas of the cryfish. Dev Biol 10:122–153CrossRefGoogle Scholar
  20. Del Ramo J, Torreblanca A, Martinez MAP, Diaz-Mayans J (1995) Quantification of cadmium-induced metallothionein in crustaceans by the silver-saturation method. Mar Environ Res 39:121–125CrossRefGoogle Scholar
  21. Engel DW, Brouwer M (1993) Crustaceans as models for metal metabolism: I. Effects of the molt cycle on blue crab metal metabolism and metallothionein. Mar Environ Res 35:1–5CrossRefGoogle Scholar
  22. Engel DW, Roesijadi G (1987) Metallothioneins: a monitoring tool. In: Vernberg FJ (eds) Pollution physiology of estuarine organisms. University of South Carolina Press, USA, pp 421–438Google Scholar
  23. Foster CA, Howse HD (1978) A morphological study on gills of the brown shrimp, Penaeus aztecus. Tissue Cell 10:77–92CrossRefGoogle Scholar
  24. Gibson R, Barker PL (1979) The decapod hepatopancreas. Oceanogr Mar Biol Ann Rev 17:285–346Google Scholar
  25. Gilles R, Pequeux A (1983) Interactions of chemical and osmotic regulation with the environment. In: Vernberg FJ, Vernberg WB (eds) The biology of Crustacea. Environmental adaptations, vol. 8. Academic, New York, pp 109–177Google Scholar
  26. Grey DL, Dall W, Baker A (1983) A guide to the Australian Penaeid prawns. Northern Territory Government Printing Office, Darwin, Australia. 140 ppGoogle Scholar
  27. Hirsch GC, Jacobs W (1930) Der Arbeitsrhythmus der Mitteldarmdruse von Astacus leptodactyus. II. Teil: Wachstum als primarer Faktor des Rhythmus eines polyphasischen organigen Sekretionssystems. Z Vergl Physiol 12:524–557CrossRefGoogle Scholar
  28. Holthuis LB (1980) FAO Species Catalogue. Vol. 1. Shrimps and prawns of the world. An annotated catalogue of species of interest to fisheries. Food and Agriculture Organization of the United Nations, Rome, 271 ppGoogle Scholar
  29. Hopkin SP (1989) Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London, 366 ppGoogle Scholar
  30. Hopkin SP, Nott JA (1980) Studies on the digestive cycle of the shore crab Carcinus meanes (L.) with special reference to the B-cells in the hepatopancreas. J Mar Biol Assoc UK 60:891–907CrossRefGoogle Scholar
  31. Icely JD, Nott JA (1992) Digestion and absorption: digestive system and associated organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Decapod Crustacea, vol. 10. Wiley-Liss Inc, New York, pp 147–201Google Scholar
  32. Jacobs W (1928) Untersuchungen uber die Cytologie der Sekretbildung in der Mitteldarmdruse von Aztecus leptodactylus. Z Zellforsch Mikrosk Anat 8:1–62CrossRefGoogle Scholar
  33. Johnston W, Barber AA (1969) Reconstitution of functional hemocyanin from apohemocyanin: the hepatopancreas as copper donor. Comp Biochem Physiol 28:1259–1273CrossRefGoogle Scholar
  34. Joseph KO, Srivastava JP, Kadir PMA (1992) Acute toxicity of five heavy metals to the prawn, Penaeus indicus H. Milne Edwards in brackishwater medium. J Inland Fish Soc India 24:82–84Google Scholar
  35. Law RJ, Waldock MJ, Allchin CR, Laslett RE, Bailey KJ (1994) Contaminants in seawater around England and Wales: results from monitoring surveys, 1990–1992. Mar Pollut Bull 28:668–675CrossRefGoogle Scholar
  36. Legras S, Mouneyrac C, Amiard JC, Amiard-Trichet C, Rainbow PS (2000) Changes in metallothionein concentrations in response to variation in natural factors (salinity, sex, weight) and metal contamination in crabs from a rich-metal estuary. J Exp Mar Biol Ecol 246:259–279CrossRefGoogle Scholar
  37. Le Reste L (1978) Biologie d’une population de crevettes Penaeus indicus H. Milne Edwards sur la cote nord-ouest de Madagascar. O.R.S.T.O.M., Paris. 291 ppGoogle Scholar
  38. Marigomez I, Soto M, Carajaville MP, Angulo E, Giamberini L (2002) Cellular and subcellular distribution of metals in molluscs. Microsc Res Technol 56:358–392CrossRefGoogle Scholar
  39. Martin GG, Hose E (1992) Vascular elements and blood (Hemolymph). In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, Decapod Crustacea, vol. 10. Wiley-Liss Inc, New York, pp 117–149Google Scholar
  40. Mason AZ, Jenkins KD (1995) Metal detoxification in aquatic organisms. In: Tessier A, Turner RA (eds) Metal speciation and bioavailability in aquatic systems, vol. 3. Wiley, Chichester, pp 479–578Google Scholar
  41. McClurg TP (1984) Effects of fluoride, cadmium and mercury on the estuarine prawn, Penaeus indicus. Water SA 10:40–45Google Scholar
  42. Moksnes PO, Lindahl U, Haux C (1995) Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei: a study of dose-dependant induction. Mar Environ Res 39:143–146CrossRefGoogle Scholar
  43. Mouneyrac C, Amiard-Trichet C, Amiard JC, Rainbow PS (2001) Comparison of metallothionein concentrations and tissue distribution of trace metals in crabs (Pachygrapsus mamoratus) from a metal-rich estuary, in and out the reproductive season. Comp Biochem Physiol C 129:193–209Google Scholar
  44. Nassiri Y, Rainbow PS, Amiard-Triquet C, Rainglet F, Smith BD (2000) Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea: Amphipoda). Mar Biol 136:477–484CrossRefGoogle Scholar
  45. Nimmo DWR, Lightner DV, Bahner LH (1977) Effects of cadmium on the shrimps, Penaeus duorarum, Palaemonetes pugio and Palaemonetes vulgaris. In: Vernberg FJ (Ed) Physiological responses of marine biota to pollutants. Academic, New York, pp 131–183CrossRefGoogle Scholar
  46. Nunez-Nogueira G, Rainbow PS (2005a) Kinetics of zinc uptake from solution, accumulation and excretion by the decapod crustacean Penaeus indicus. Mar Biol 147:93–103CrossRefGoogle Scholar
  47. Nunez-Nogueira G, Rainbow PS (2005b) Cadmium uptake and accumulation by the decapod crustacean Penaeus indicus. Mar Environ Res 60:339–354CrossRefGoogle Scholar
  48. Nunez-Nogueira G, Smith BD, Rainbow PS (2006) Assimilation efficiency of zinc and cadmium in the decapod crustacean Penaeus indicus. J Exp Mar Biol Ecol 332:75–83CrossRefGoogle Scholar
  49. Olafson RW, Olsson PE (1991) Electrochemical detection of metallothionein. Method Enzymol 205:205–213CrossRefGoogle Scholar
  50. Papathanassiou E, King PE (1984) Effects of starvation on the fine structure of the hepatopancreas in the common prawn Palaemon Serratus (Pennant). Comp Biochem Physiol 77A:243–249CrossRefGoogle Scholar
  51. Pérez-Farfante I, Kensley B (1997) Penaeoid and sergestoid shrimps and prawns of the world. Mémoires du Museum National d’Histoire Naturelle, Paris 175, pp 1–233Google Scholar
  52. Pourang N, Dennis JH, Ghourchian H (2004) Tissue distribution and redistribution of trace elements in shrimp species with emphasis on the roles of metallothionein. Ecotox 13:519–533CrossRefGoogle Scholar
  53. Rainbow PS (1997) Ecophysiology of trace metal uptake in crustaceans. Estuar Coast Shelf Sci 44:169–175CrossRefGoogle Scholar
  54. Rainbow PS (1998) Phylogeny of trace metal accumulation in crustaceans. In: Langston WJ, Bebianno M (eds) Metal metabolism in aquatic environments. Chapman and Hall, London pp 285–319CrossRefGoogle Scholar
  55. Rainbow PS, Scott AG (1979) Two heavy metal-binding proteins in the midgut gland of the crab Carcinus maenas. Mar Biol 55:143–150CrossRefGoogle Scholar
  56. Roesijadi G (1981) The significance of low molecular weight, metallothionein-like proteins in marine invertebrates: current status. Mar Environ Res 4:167–179CrossRefGoogle Scholar
  57. Roesijadi G (1993). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquat Toxicol 22:81–114CrossRefGoogle Scholar
  58. Soegianto A, Charmantier-Daures M, Trilles JP, Charmantier G (1999a) Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus (Decapoda). J Crust Biol 19:209–223CrossRefGoogle Scholar
  59. Soegianto A, Charmantier-Duares M, Trilles JP, Charmantier G (1999b) Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicus (Crustacea: Decapoda). Aquat Living Resour 12:57–70CrossRefGoogle Scholar
  60. Taylor HM, Taylor EW (1992) Gills and lungs: exchange of gases and ions. In: Hamson FW, Humes AG (eds) Microscopic anatomy of invertebrates, Decapod Crustacea, vol. 10. Wiley-Liss Inc, New York, pp 203–293Google Scholar
  61. Thompson JAJ, Cosson RP (1984) An improved electrochemical method for the quantification of metallothioneins in marine organisms. Mar Environ Res 11:137–152CrossRefGoogle Scholar
  62. Viarengo A, Burlando B, Dondero F, Marro A, Fabbri R (1999) Metallothionein as a tool in biomonitoring programmes. Biomarkers 4:455–466CrossRefGoogle Scholar
  63. Vogt G, Quinitio ET (1994) Accumulation and excretion of metal granules in the prawn, Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquat Toxicol 28:223–241CrossRefGoogle Scholar
  64. Williams B (2000) Biostatistics. Chapman and Hall/CRC. Boca Raton, 201ppGoogle Scholar
  65. Wong VWT, Rainbow PS (1986) Two metallothioneins in the shore crab Carcinus maenas. Comp Biochem Physiol A 83(1):149–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • G. Nunez-Nogueira
    • 1
    • 4
  • C. Mouneyrac
    • 2
  • J. C. Amiard
    • 3
  • P. S. Rainbow
    • 1
    Email author
  1. 1.Department of ZoologyThe Natural History Museum LondonUK
  2. 2.Centre d’étude et de Recherche sur les écosystèms aquatiquesUniversité Catholique de l’ouestAngers Cedex 01France
  3. 3.Service d’EcotoxicologieCNRS-GDR 1117, ISOMer, SMABNantes Cedex 3France
  4. 4.Laboratorio de Contaminación Marina, Instituto de Ciencias del Mar y LimnologíaUNAMMéxico DFMexico

Personalised recommendations