Marine Biology

, Volume 150, Issue 2, pp 237–244 | Cite as

Food effects on statolith composition of the common cuttlefish (Sepia officinalis)

  • Karsten ZumholzEmail author
  • Thor H. Hansteen
  • Andreas Klügel
  • Uwe Piatkowski
Research Article


The concentration of trace elements within cephalopod statoliths can provide a record of the environmental characteristics at the time of calcification. To reconstruct accurately the environmental characteristics at the time of calcification, it is important to understand the influence of as many factors as possible. To test the hypothesis that the elemental composition of cuttlefish statoliths could be influenced by diet, juvenile Sepia officinalis were fed either shrimp Crangon sp. or fish Clupea harengus under equal temperature and salinity regimes in laboratory experiments. Element concentrations in different regions of the statoliths (core–lateral dome–rostrum) were determined using laser ablation inductively coupled plasma mass spectrometry (LA- ICPMS). The ratios of Sr/Ca, Ba/Ca, Mn/Ca and Y/Ca in the statolith’s lateral dome of shrimp-fed cuttlefish were significantly higher than in the statolith’s lateral dome of fish-fed cuttlefish. Moreover, significant differences between statolith regions were found for all analysed elements. The fact that diet adds a considerable variation especially to Sr/Ca and Ba/Ca must be taken into account in future micro-chemical statolith studies targeting cephalopod’s life history.


Inductively Couple Plasma Mass Spectrometry Elemental Composition Aragonite Dietary Effect Fish Otolith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Thomas Lacoue-Labarthe and Noussithe Koueta are acknowledged for generously providing cuttlefish eggs. Jürgen Beusen assisted with egg transport and maintenance. Nicole Hielscher provided invaluable help during the experiments, and Heike Anders helped in preparing and carrying out the ICP-MS analyses. The experiments comply with the current law of Germany.


  1. Arkhipkin AI (2005) Statoliths as ‘black boxes’ (life recorders) in squid. Mar Freshw Res 56:573–583CrossRefGoogle Scholar
  2. Arkhipkin AI, Campana SE, FitzGerald J, Thorrold SR (2004) Spatial and temporal variation in elemental signatures of statoliths from the Patagonian longfin squid (Loligo gahi). Can J Fish Aquat Sci 61:1212–1224CrossRefGoogle Scholar
  3. Bettencourt V, Guerra A (2000) Growth increments and biomineralization process in cephalopod statoliths. J Exp Mar Biol Ecol 248:191–205CrossRefGoogle Scholar
  4. Buckel JA, Sharack BL, Zdanowicz VS (2004) Effect of diet on otolith composition in Pomatomus saltatrix, an estuarine piscivore. J Fish Biol 64:1469–1484CrossRefGoogle Scholar
  5. Bustamante P, Teyssié JL, Fowler SW, Cotret O, Danis B, Miramand P, Warnau M (2002) Biokinetics of zinc and cadmium accumulation and depuration at different stages in the life cycle of the cuttlefish Sepia officinalis. Mar Ecol Progr Ser 231:167–177CrossRefGoogle Scholar
  6. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Progr Ser 188:263–297CrossRefGoogle Scholar
  7. Castro BG, Guerra A (1990) The diet of Sepia officinalis (Linnaeus, 1758) and Sepia elegans (D’Orbigny, 1835) (Cephalopoda, Sepioidea) from the Ria de Vigo (NW Spain). Sci Mar 54(4):375–388Google Scholar
  8. Clarke MR, Pascoe PL (1985) The Stomach contents of a Risso’s dolphin (Grampus griseus) stranded at Thurlestone, South Devon. J Mar Biolog Assoc UK 65:663–665CrossRefGoogle Scholar
  9. Cohen AL, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16(1):20–26CrossRefGoogle Scholar
  10. Denis V, Robin JP (2001) Present status of the French Atlantic fishery for cuttlefish (Sepia officinalis). Fish Res 52:11–22CrossRefGoogle Scholar
  11. Durholtz MD, Lipinski MR, Przybylowicz WJ, Mesjasz- Przybylowicz J (1997) Nuclear microprobe mapping of statoliths of Chokka Squid Loligo vulgaris reynaudii d’Orbigny, 1845. Biol Bull 193:125–140CrossRefGoogle Scholar
  12. FAO (2005) FISHSTAT Plus Global data set Capture production 1950–2003 (FAO yearbook Fishery Statistics). Scholar
  13. Farrell J, Campana SE (1996). Regulation of calcium and strontium deposition on the otoliths of juvenile tilapia, Oreochromis niloticus. Comp Biochem Physiol 115A:103–109CrossRefGoogle Scholar
  14. Ferrier-Pages C, Boisson F, Allemand D, Tambutte E (2002) Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar Ecol Prog Ser 245:93–100CrossRefGoogle Scholar
  15. Gallahar NK, Kingsford MJ (1996) Factors influencing Sr/Ca ratios in otoliths of Girella elevata: an experimental investigation. J Fish Biol 48:174–186Google Scholar
  16. Guillong M, Horn I, Günther D (2003). A comparison of 266, 213 and 193 nm produced from a single solid state Nd:YAG laser for laser ablation ICP-MS. J Anal Atom Spectr 18:1224–1230CrossRefGoogle Scholar
  17. Hoff GR, Fuiman LA (1995) Environmentally induced variation in elemental composition of red drum (Sciaenops ocellatus) otoliths. Bull Mar Sci 56:578–591Google Scholar
  18. Hurley GV, Odense PH, O’Dor RK, Dawe EG (1985) Strontium labelling for verifying daily growth increments in the statolith of the short-finned squid (Illex illecebrosus). Can J Fish Aquat Sci 42(2):380–383CrossRefGoogle Scholar
  19. Ikeda Y, Arai N, Kidokoro H, Sakamoto W (2003) Strontium:calcium ratios in statoliths of Japanese common squid Todarodes pacificus (Cephalopoda: Ommastrephidae) as indicators of migratory behaviour. Mar Ecol Prog Ser 251:169–179CrossRefGoogle Scholar
  20. Jochum KP, Dingwell DB, Rocholl A, Stoll B, Hofmann AW, Becker S, Besmehn A, Bessette D, Dietze HJ, Dulski P, Erzinger J, Hellebrand E, Hoppe P, Horn I, Janssens K, Jenner GA, Klein M, McDonough WF, Maetz M, Mezger K, Munker C, Nikogosian IK, Pickhardt C, Raczek I, Rhede D, Seufert HM, Simakin SG, Sobolev AV, Spettel B, Straub S, Vincze L, Wallianos A, Weckwerth G, Weyer S, Wolf D, Zimmer M (2000) The preparation and preliminary characterisation of eight geological MPI-DING reference glasses for in-site microanalysis. Geostand Newslett 24:87–133CrossRefGoogle Scholar
  21. Kalish JM (1990) Use of otolith microchemistry to distinguish the progeny of sympatric anadromous and nonanadromous salmonids. Fish Bull US 88: 657–666Google Scholar
  22. Kalish JM (1991) Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophycis barbatus. Mar Ecol Prog Ser 74:137–159CrossRefGoogle Scholar
  23. Limburg KE (1995) Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Mar Ecol Prog Ser 119:25–5CrossRefGoogle Scholar
  24. Lipinski MR (1993) The deposition of statoliths: a working hypothesis. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent Advances in Cephalopod Fisheries Biology. Tokai University Press, TokyoGoogle Scholar
  25. Milton DA, Chenery SR (2001) Sources and uptake of trace metals in otoliths of juvenile barramundi (Lates calcarifer). J Exp Mar Biol Ecol 264:47–65CrossRefGoogle Scholar
  26. Morris CC (1991) Statocyst fluid composition and its effects on calcium carbonate precipitation in the squid Alloteuthis subulata (Lamarck, 1798): towards a model for biomineralization. Bull Mar Sci 49(1–2):379–388Google Scholar
  27. Mugiya Y, Satoh C (1997) Strontium accumulation in slow-growing otoliths in the goldfish Carassius auratus. Fish Sci 63:361–364CrossRefGoogle Scholar
  28. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CL, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21:115–144CrossRefGoogle Scholar
  29. Sadovy Y, Severin KP (1992) Trace elements in biogenic aragonite: correlation of body growth rate and strontium levels in the otoliths of the white grunt, Haemulon plumieri (Pisces: Haemulidae). Bull Mar Sci 50:237–257Google Scholar
  30. Townsend DW, Radtke RL, Corwin S, Libby DA (1992) Strontium:calcium ratios in juvenile Atlantic herring Clupea harengus L. otoliths as a function of water temperature. J Exp Mar Biol Ecol 160:131–140CrossRefGoogle Scholar
  31. Yatsu A, Mochioka N, Morishita K, Toh H (1998) Strontium/Calcium ratios in statoliths of the neon flying squid Ommastrephes bartrami (Cephalopoda) in the North Pacific Ocean. Mar Biol 131:275–282CrossRefGoogle Scholar
  32. Zacherl DC, Paradis G, Lea DW (2003) Barium and strontium uptake into larval protoconchs and statoliths of the marine neogastropod Kelletia kelletii. Geochim Cosmochim Acta 67:4091–4099CrossRefGoogle Scholar
  33. Zumholz K (2005) The influence of environmental factors on the micro-chemical composition of cephalopod statoliths. PhD thesis, University of Kiel, Germany p 86Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Karsten Zumholz
    • 1
    Email author
  • Thor H. Hansteen
    • 1
  • Andreas Klügel
    • 2
  • Uwe Piatkowski
    • 1
  1. 1.IFM-GEOMARLeibniz-Institut für MeereswissenschaftenKielGermany
  2. 2.Fachbereich GeowissenschaftenUniversität BremenBremenGermany

Personalised recommendations