Advertisement

Marine Biology

, Volume 150, Issue 1, pp 103–110 | Cite as

Phylogeographic study of the dwarf oyster, Ostreola stentina, from Morocco, Portugal and Tunisia: evidence of a geographic disjunction with the closely related taxa, Ostrea aupouria and Ostreola equestris

  • Sylvie Lapègue
  • Inès Ben Salah
  • Frederico M. Batista
  • Serge Heurtebise
  • Lassad Neifar
  • Pierre Boudry
Research Article

Abstract

Despite the economic importance of oysters due to the high aquaculture production of several species, the current knowledge of oyster phylogeny and systematics is still fragmentary. In Europe, Ostrea edulis, the European flat oyster, and Ostreola stentina, the Provence oyster or dwarf oyster, are both present along the European and African, Atlantic and Mediterranean, coasts. In order to document the relationship not only between O. stentina and O. edulis, but also with the other Ostrea and Ostreola species, we performed a sequence analysis of the 16S mitochondrial fragment (16S rDNA: the large subunit rRNA-coding gene) and the COI fragment (COI: cytochrome oxidase subunit I). Oysters were sampled from populations in Portugal (two populations), Tunisia (two populations) and Morocco (one population), identified as O. stentina on the basis of shell morphological characters. Our data supported a high degree of differentiation between O. stentina and O. edulis and a close relationship between O. stentina and both Ostrea aupouria (from New Zealand) and Ostreola equestris (from Mexico Gulf/Atlantic). The status of this geographic disjunction between these closely related species is discussed. Furthermore, although identified in a separate genus Ostreola by Harry (Veliger 28:121–158, 1985), our molecular data on O. stentina, together with those available for the other two putative congeneric species, O. equestris and Ostreola conchaphila, would favour incorporation of Ostreola in Ostrea. Finally, a PCR-RFLP approach allowed the rapid identification of O. edulis and O. stentina.

Keywords

Cytochrome Oxidase Subunit Southwestern Coast Allozymic Marker Biometric Analysis Adductor Muscle Scar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We would like to thank F. Ruano for helping us to obtain samples of O. stentina from Sado estuary and A. Bernoussi from INRH of Casablanca for providing us the oyster samples from Morocco. This work was made possible by a close collaboration between the University of Sfax and IFREMER and a FCT grant (SFRH/BD/8972/2002) and by a Marie Curie Training fellowship (PLUDAMOR, QLK5-CT-2000-60036) to F.M. Batista. This work was partly supported by the Région Poitou-Charentes (Convention No. 2001-RPC-A-212 ). The experimental procedure complied with the current national laws.

References

  1. Amezcua O, Cross I, Rebordinos L (2001) Development and characterisation of allozyme markers in Ostrea stentina. Ser Monogr ICCM 4:575–580Google Scholar
  2. Avise JC (eds) (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  3. Banks MA, Hedgecock D, Waters C (1993) Discrimination between closely related Pacific oyster species (Crassostrea) via mitochondrial DNA sequences coding for large subunit rRNA. Mol Mar Biol Biotechnol 2:129–136PubMedGoogle Scholar
  4. Blanc F, Jaziri H, Durand P (1986) Isolement génétique et taxonomie des huîtres planes dans une lagune du sud de la Méditerranée occidentale. C R Acad Sci Paris 303:207–210Google Scholar
  5. Boudry P, Heurtebise S, Collet B, Cornette F, Gérard G (1998) Differentiation between populations of the Portuguese oyster, Crassostrea angulata (Lamarck) and the Pacific oyster, Crassostrea gigas (Thunberg), revealed by mtDNA RFLP analysis. J Exp Mar Biol Ecol 226:279–291CrossRefGoogle Scholar
  6. Buroker NE, Hershberger WK, Chew KK (1979) Populations genetics of the family Ostreidae. I. Intraspecific studies of Crassostrea gigas and Saccostrea commercialis. Mar Biol 54:157–169CrossRefGoogle Scholar
  7. Carlton JT, Mann R (1996) Transfers and world-wide introductions. In: Kennedy VS, Newell RIE, Eble AF (eds) The eastern oyster Crassostrea virginica. Maryland Sea Grant, College Park, pp 691–706Google Scholar
  8. Chew KK (1990) Global bivalve shellfish introductions. World Aquac 21:9–22Google Scholar
  9. Coan EV, Valentich Scott P, Bernard FR (2000) Bivalve seashells of western North America. Marine bivalve mollusks from Arctic Alaska to Baja California, Santa Barbara Museum of Natural History Monographs No. 2. Santa Barbara Museum of Natural History, Santa BarbaraGoogle Scholar
  10. Dinamini PA (1971) Occurrence of the Japonese oyster Crassostrea gigas (Thunberg) in Northland, New Zealand. N Z J Mar Freshwater Res 5:352–357CrossRefGoogle Scholar
  11. Dinamini PA, Beu AG (1981) Description of a new species of incubatory oyster from Norther New Zealand, with notes on its ecology and reproduction. N Z J Mar Freshwater Res 15:109–119CrossRefGoogle Scholar
  12. Edwards C (1976) A study in erratic distribution: the occurrence of the medusa Gonionemus in relation to the distribution of oysters. Adv Mar Biol 14:251–284CrossRefGoogle Scholar
  13. FAO yearbook (2003) Fishery statistics, Aquaculture production 2003, vol 96/2Google Scholar
  14. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166Google Scholar
  15. Folmer O, Black M, Hoech W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  16. Giribet G, Wheeler WC (2002) On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebr Biol 121:271–324CrossRefGoogle Scholar
  17. Gonzalez-Wangüemert M, Perez-Ruzafa A, Rosique MJ, Ortiz A (2004) Genetic differentiation in two cryptic species of Ostreidae, Ostrea edulis (Linnaeus, 1758) and Ostreola stentina (Payraudeau, 1826) in Mar Menor Lagoon, southwestern Mediterranean Sea. Nautilus 188:103–111Google Scholar
  18. Harry HW (1985) Synopsis of the supraspecific classification of living oysters, (Bivalvia: Gryphaeidae and Ostreidae). Veliger 28:121–158Google Scholar
  19. Jaziri H (1990) Variations génétiques et structuration biogéographique chez un bivalve marin: l’huître plate Ostrea edulis (L.). PhD dissertation, Université Montpellier II—Sciences et Techniques du LanguedocGoogle Scholar
  20. Jozefowicz CJ, O’Foighil D (1998) Phylogenetic analysis of southern hemisphere flat oysters based on partial mitochondrial 16S rDNA gene sequences. Mol Phylogenet Evol 10:426–435CrossRefGoogle Scholar
  21. Kenchington E, Bird CJ, Osborne J, Reith M (2002) Novel repeat elements in the nuclear ribosomal RNA operon of the flat oyster Ostrea edulis C. Linneaus, 1758 and O. angasi Sowerby 1871. J Shellfish Res 21:697–705Google Scholar
  22. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  23. Kirkendale L, Lee T, Baker P, O’Foighil D (2004) Oysters of the Conch Republic (Florida Keys): a molecular phylogenetic study of Parahyotissa mcgintyi, Teskeyostrea weberi and Ostreola equestris. Malacologia 46:309–326Google Scholar
  24. Lapègue S, Boutet I, Leitao A, Heurtebise S, Garcia P, Thiriot-Quiévreux C, Boudry P (2002) Trans-Atlantic distribution of a mangrove oyster species revealed by 16S mtDNA and karyological analyses. Biol Bull 202:32–242CrossRefGoogle Scholar
  25. Leal AM (1984) Estado actual das ostreiras dos estuarios do Tejo, Sado, Mira e do Algarve. In: INIP/APRH (eds) Seminario sobre aquacultura, Lisboa, pp 71–86Google Scholar
  26. Lopez-Flores I, De la Herran R, Garrido-Ramos M, Boudry P, Ruiz-Rejon C, Ruiz-Rejon M (2004) The molecular phylogeny of oysters based on a satellite DNA related to transposons. Gene 339:181–188CrossRefGoogle Scholar
  27. Moore D (1993) Preparation of genomic DNA from mammalian tissue. In: Ausubel FM (ed) Current protocols in molecular biology, vol 1. Wiley, New York, pp 1–2Google Scholar
  28. Morton B, Lam K, Black-Smith S (2003) First report of the European flat oyster Ostrea edulis, identified genetically, from Oyster Harbour, Albany, south-western Western Australia. Molluscan Res 23:199–208CrossRefGoogle Scholar
  29. O’Foighil D, Taylor DJ (2000) Evolution of parental care and ovulation behavior in oysters. Mol Phylogenet Evol 15:301–313CrossRefGoogle Scholar
  30. O’Foighil D, Gaffney PM, Wilbur AE, Hilbish TJ (1998) Mitochondrial cytochrome oxidase I gene sequences support an Asian origin for the Portuguese oyster Crassostrea angulata. Mar Biol 131:497–503CrossRefGoogle Scholar
  31. O’Foighil D, Marshall BA, Hilbish TJ, Pino MA (1999) Trans-Pacific range extension by rafting is inferred for the flat oyster Ostrea chilensis. Biol Bull 196:122–126CrossRefGoogle Scholar
  32. Pascual E (1972) Estudio de las conchas larvarias de Ostrea stentina, Payr. Y Ostrea edulis. L Inv Pesq 36:297–310Google Scholar
  33. Quayle DB (1988) Pacific oyster culture in British Columbia. Can Bull Fish Aquat Sci 218Google Scholar
  34. Ranson G (1951) Les huîtres: biologie—culture. Paul Lechevalier, Paris, 260 ppGoogle Scholar
  35. Ranson G (1967) Les espèces d’huîtres vivant actuellement dans le monde, définies par leurs coquilles larvaires ou prodissoconques. Edtude des collections de quelques-uns des grands musées d’histoire naturelle. Rev Trav Inst Pech Mar 31:127–274Google Scholar
  36. Rosique MJ, Garcia-Garcia B, Rosique M (1995) Primera aproximacion a la identificacion del comportamiento en cultivo de dos especies de ostreidos del Mar Menor. In: Ministerio de Agricultura, Pesca y Alimentacion (eds) Actas del V Congreso Nacional de Acuicultura, Cartagena, Murcia, pp 106–112Google Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res 22:4673–4680CrossRefGoogle Scholar
  38. Yamaguchi K (1994) Shell structure and behaviour related to cementation in oysters. Mar Biol 118:89–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sylvie Lapègue
    • 1
  • Inès Ben Salah
    • 2
  • Frederico M. Batista
    • 3
    • 4
  • Serge Heurtebise
    • 1
  • Lassad Neifar
    • 2
  • Pierre Boudry
    • 1
  1. 1.Laboratoire de Génétique et Pathologie, IFREMERLa TrembladeFrance
  2. 2.Faculté des Sciences de SfaxLaboratoire d’écobiologie AnimaleSfaxTunisia
  3. 3.Instituto Nacional de Investigação Agrária e das Pescas (INIAP/IPIMAR), CRIPSulOlhaoPortugal
  4. 4.Instituto de Ciências Biomédicas Abel Salazar (ICBAS)Universidade do PortoPortoPortugal

Personalised recommendations