Advertisement

Marine Biology

, Volume 149, Issue 3, pp 667–677 | Cite as

Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte

  • J. A. Borg
  • A. A. Rowden
  • M. J. Attrill
  • P. J. Schembri
  • M. B. Jones
Research Article

Abstract

The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.

Keywords

Polychaete Matte Type Assemblage Composition Shoot Density Macroinvertebrate Assemblage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Mike Kendall (Plymouth Marine Laboratory, UK), Maria Beatrice Scipione (Stazione Zoologica Anton Dohrn, Ischia, Naples) and Constantine Mifsud (Malta) for help with identification of macrofauna. J. A. Borg received financial support from the University of Malta. The experiments carried out as part of this study comply with the laws of Malta, where they were held. This paper benefited from the suggestions of two anonymous referees.

References

  1. Abada Guerroui H, Willise A (1984) Resultats preliminaries de l’étude des constituants chimiques et faunistiques d’une matte d’herbier à Posidonia oceanica, à fos et sur la cote bleue (Bouches-Du-Rhone, France). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 389–398Google Scholar
  2. Ardizzone GD, Pelusi P (1984) Yield damage of bottom trawling on Posidonia oceanica meadows. In: Boudouresque CF, Jeudy de Grissac A., Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 63–72Google Scholar
  3. Augier H (1986) L’herbier à Posidonia oceanica, son importance pour le littoral Méditeranéen, sa valeur comme indicateur biologique de l’ état de santé de la mer, son utilisation dans la surveillance du mileu, les bilans écologiques et les etudes d’impact. Vie Marine 7:85–113Google Scholar
  4. Augier H, Boudouresque CF (1970) Végétation marine de l’île de Port-Cros (parc national). VI: Le récif-barrière de posidonies. Bull Mus His Naturelle Mars 30:221–228Google Scholar
  5. Baden SP, Boström C (2001) The leaf canopy of seagrass beds: faunal community structure and function in a salinity gradient along the Swedish coast. In: Reise K (ed) Ecological comparisons of sedimentary shores. Springer, Berlin Heidelberg New York, pp 213–236CrossRefGoogle Scholar
  6. Barberi R, Baroli M, Cossu A (1995) Indagini fenologiche e lepidocronologiche finalizzate alla stima della produttivita’ primaria della prateria a Posidonia oceanica (L.) Delile nella baia di Porto Conte (NW Sardegna). Biol Mar Med 2:347–349Google Scholar
  7. Bell JD, Harmelin-Vivien ML (1982) Fish fauna of French Mediterranean Posidonia oceanica seagrass meadows 1. Community structure. Téthys 10:337–347Google Scholar
  8. Bell JD, Westoby M (1986) Importance of local changes in leaf height and density to fish and decapods associated with seagrasses. J Exp Mar Biol Ecol 104:249–274CrossRefGoogle Scholar
  9. Bellan-Santini D, Willsie A, Arnoux A (1986) Distribution comparée des crustacés amphipods de la matte d’herbier de posidonies mort et vivant. Rapp Comm Int Mer Méd 30:8Google Scholar
  10. Bianchi CN, Bedulli D, Morri C, Occhipinti Ambrogi A (1989) L’herbier de Posidonies: écosystème ou carrefour éco-éthologique? In: Boudouresque CF, Meinesz A, Fresi E, Gravez V (eds) International Workshop on Posidonia beds 2. GIS Posidonie, France, pp 257–272Google Scholar
  11. Blanc JJ, Jeudy De Grissac A (1984) Erosions sous-marines des herbiers à Posidonia oceanica (Méditerraneé). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 23–28Google Scholar
  12. Borg JA, Schembri PJ (1995) The state of Posidonia oceanica (L.) Delile meadows in the Maltese Islands (Central Mediterranean). Rapp Comm Int Mer Méd 34:123Google Scholar
  13. Borg JA, Micallef SA, Pirotta K, Schembri PJ (1997) Baseline marine benthic surveys in the Maltese Islands (Central Mediterranean). In: Özhan E (ed) Proceedings of the 3rd international conference on the mediterranean coastal environment MEDCOAST ’97. MEDCOAST Secretariat, Ankara, pp 1–8 + 5 figsGoogle Scholar
  14. Borg JA, Attrill MJ, Rowden AA, Schembri PJ, Jones MB (2002) A quantitative technique for sampling motile macroinvertebrates in beds of the seagrass Posidonia oceanica (L.) Delile. Sci Mar 66:53–58CrossRefGoogle Scholar
  15. Boström C, Bonsdorf E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. J Sea Res 37:153–166CrossRefGoogle Scholar
  16. Boudouresque CF, Meinesz A, Lefevre JR (1985) Cartographie des peuplements benthiques marins de Corse: I. La formation recifale a Posidonia oceanica de Saint-Florent. Ann Inst Océanogr 61:27–38Google Scholar
  17. Boudouresque CF, Meinesz A, Ledoyer M, Vitello P (1994) Les hérbiers à phanérogames marines. In: Bellan-Santini D, Lacaze JC, Poizat C (eds) Les Biocénoses Marines et Littorals de Méditerranée: Synthèse, Menaces et Perspectives. Collection Patrimonies Naturels 19. Museum National d’Historie Naturelle, Paris, pp 98–118Google Scholar
  18. Branch GM, Pringle A (1987) The impact of the sand prawn Calianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna and benthic microflora. J Exp Mar Biol Ecol 107:219–235CrossRefGoogle Scholar
  19. Buchanan JB (1984) Sediment analysis. In: Holme NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell, Oxford, pp 41–65Google Scholar
  20. Buia MC, Gambi MC, Zupo V (2000) Structure and functioning of Mediterranean seagrass ecosystems: an overview. Biol Mar Med 7:167–190Google Scholar
  21. Calvo S, Frada-Orestano C (1984) L’herbier à Posidonia oceanica des côtes siciliennes: les formations récifales du Stagnone. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 29–37Google Scholar
  22. Clarke KR (1993) Non-parametric multivariate analyses of change in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  23. Clarke KR, Ainsworth M (1993) A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser 92:205–219CrossRefGoogle Scholar
  24. Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E Ltd, PlymouthGoogle Scholar
  25. Connolly RM (1995) Effects of removal of seagrass canopy on assemblages of small, motile invertebrates. Mar Ecol Prog Ser 118:129–137CrossRefGoogle Scholar
  26. Connolly RM (1997) Differences in composition of small, motile invertebrate assemblages from seagrass and unvegetated habitats in a southern Australian estuary. Hydrobiologia 346:137–148CrossRefGoogle Scholar
  27. Currás A, Sánchez Mata A, Mora J (1993) Estudio comparativo de la macrofauna benthonica de un fondo de Zostera marina y un fondo arenoso libre de cubierta vegetal. Cah Biol Mar 35:91–112Google Scholar
  28. De Metrio G, Vaccarella R, Bello G, Terio E (1978) Stima dell’area minima nelle ‘mattes’ di Posidonia oceanica Delile (zoobenthos). Atti Soc Pelorit Sc Fis Mat Nat (Italy) XXIV:249–263Google Scholar
  29. De Metrio G, Bello G, Vaccarella R, Terio E (1980) Malacofauna di ‘mattes’ morte di Posidonia. Atti Soc Pelorit Sc Fis Mat Nat (Italy) XXVI:2–8Google Scholar
  30. Den Hartog C (1970) The sea grasses of the world. North-Holland Publications Co., Amsterdam, p 275Google Scholar
  31. Drew EA, Jupp BP (1976) Some aspects of the growth of Posidonia oceanica in Malta. In: Drew EA, Lithgoe JN, Woods JD (eds) Underwater research. Academic, London, pp 357–369CrossRefGoogle Scholar
  32. Duarte CM, Benavent E, del Carmen Sánchez M (1999) The microcosm of particles within seagrass Posidonia oceanica canopies. Mar Ecol Prog Ser 181:289–295CrossRefGoogle Scholar
  33. Edgar GJ, Shaw C, Watson GF, Hammond LS (1994) Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J Exp Mar Biol Ecol 176:201–226CrossRefGoogle Scholar
  34. Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N:P content. Oecologia 94:457–471CrossRefPubMedPubMedCentralGoogle Scholar
  35. Folk RL, Ward WC (1957) Brazos River Bar: a study of the significance of grain size parameters. J Sed Petrol 27:2–26CrossRefGoogle Scholar
  36. Frost MT, Rowden AA, Attrill MJ (1999) Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrass Zostera marina L. Aquat Cons Mar Freshw Ecosyst 9:255–263CrossRefGoogle Scholar
  37. Gambi MC, Buia MC, Casola E, Scardi M (1989) Estimates of water movement in Posidonia oceanica beds: a first approach. In: Boudouresque CF, Meinesz A, Fresi E, Gravez V (eds) International workshop on Posidonia beds 2. GIS Posidonie, France, pp 101–112Google Scholar
  38. Gambi MC, Lorenti M, Russo GF, Scipione MB (1992) Depth and seasonal distribution of some groups of vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analysis. PSZNI Mar Ecol 13:17–39CrossRefGoogle Scholar
  39. García Raso JE (1990) Study of a Crustacea taxoceonosis of Posidonia oceanica beds from the southeast of Spain. PSZNI Mar Ecol 11:309–326CrossRefGoogle Scholar
  40. García Raso JE, López de la Rosa I, Rosales JM (1996) Decapod crustacean communities from calcareous seaweed and Posidonia oceanica (rhizome stratum) in shallow waters. Ophelia 45:143–158CrossRefGoogle Scholar
  41. Granata TC, Serra T, Colomer J, Casamitjana X, Duarte CM, Gacia E (2001) Flow and particle distribtuions in a nearshore seagrass meadow before and after a storm. Mar Ecol Prog Ser 218:95–106CrossRefGoogle Scholar
  42. Harmelin HL (1964) Ètude de l’èndofaune des ‘mattes’ d’herbiers de Posidonia oceanica Delile. Rec Trav St Mar End 35:43–106Google Scholar
  43. Harmelin-Vivien M (1982) Ichtyofaune des herbiers à Posidonia oceanica du parc national de Port-Cros. I. Composition et variations spatio-temporelles. Trav Sci Parc Nation Port-Cros 8:69–92Google Scholar
  44. Harmelin-Vivien M (1984) Ichtyofaune des herbiers de Posidonies du parc naturel regional de Corse. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 291–301Google Scholar
  45. Harrison PG (1989) Detrital processing in seagrass ecosystems: a review of factors affecting decay rates, remineralisation and detrivory. Aquat Bot 23:263–288CrossRefGoogle Scholar
  46. Heck KL Jr, Crowder LB (1991) Habitat structure and predator–prey interactions in vegetated aquatic systems. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London, pp 281–299CrossRefGoogle Scholar
  47. Heck KL, Wetstone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J Biogeogr 4:135–142CrossRefGoogle Scholar
  48. Howard RK, Edgar GJ, Hutchinson PA (1989) Faunal assemblages of seagrass beds. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian Region. Aquatic Plant Studies 2. Elsevier, Amsterdam, pp 536–564Google Scholar
  49. Jernakoff P, Nielsen J (1997) The relative importance of amphipod and gastropod grazers in Posidonia sinuosa meadows. Aquat Bot 56:186–202CrossRefGoogle Scholar
  50. Jernakoff P, Brearly A, Nielsen J (1996) Factors affecting grazer-epiphyte interactions in temperate seagrass meadows. Ocean Mar Biol Ann Rev 34:109–162Google Scholar
  51. Jeudy de Grissac A (1984) Effets des herbiers à Posidonia oceanica sur la dynamique marine et la sédimentologie littoral. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 437–443Google Scholar
  52. Kikuchi T (1980) Faunal relationships in temperate seagrass beds. In: Phillips RC, McRoy CP (eds) Handbook of Seagrass Biology: an ecosystem perspective. Garland STPM Press, New York, pp 153–172Google Scholar
  53. Kikuchi T, Pérès JM (1977) Animal communities in seagrass beds: a review. In: McRoy CP, Helfferich C (eds) Seagrass ecosystems, a scientific perspective. Marcel Dekker, New York, pp 147–193Google Scholar
  54. Lewis FG (1984) Distribution of macrobenthic crustaceans associated with Thalassia, Halodule and bare sand substrata. Mar Ecol Prog Ser 19:101–113CrossRefGoogle Scholar
  55. Mazzella L, Scipione B, Gambi MC, Fresi E, Buia MC, Russo GF, De Maio R, Lorenti M, Rando A (1986) Le praterie sommerse del Mediterraneo. Laboratorio di Ecologia del Benthos, Stazione Zoologica ‘Anton Dohrn’ di Napoli, p 59Google Scholar
  56. Mazzella L, Buia MC, Gambi MC, Lorenti L, Russo GF, Scipione MB, Zupo V (1992) Plant–animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. In: John DM, Hawkins SJ, Price JH (eds) Plant–animal interactions in the Marine Benthos. Systematics Association Special Volume no. 46. Clarendon Press, Oxford, pp 165–187Google Scholar
  57. Meinesz A, Lefevre JL (1984) Régénération d’un herbier de Posidonia oceanica quarante annees après sa destruction par une bombe dans la rade de Villefranche (Alpes-Maritimes, France). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 39–44Google Scholar
  58. Mfilinge PL, Meziane T, Bachok Z, Tsuchiya M (2003) Fatty acids in decomposing mangrove leaves: microbial activity, decay and nutritional quality. Mar Ecol Prog Ser 265:97–105CrossRefGoogle Scholar
  59. Orth RJ, Heck KL Jr, van Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7:339–350CrossRefGoogle Scholar
  60. Ott JA (1980) Growth and production of Posidonia oceanica (L.) Delile. PSZNI Mar Ecol 1:47–64CrossRefGoogle Scholar
  61. Panayotidis P, Simboura N (1989) Distribution and phenology of Posidonia oceanica in Saronikos Gulff (Aegean Sea, Greece). In: Boudouresque CF, Meinesz A, Fresi E, Gravez V (eds) International workshop on Posidonia beds 2. GIS Posidonie, France, pp 43–48Google Scholar
  62. Pergent-Martini C, Rico-Raimondino V, Pergent G (1984) Primary production of Posidonia oceanica in the Mediterranean Basin. Mar Biol 120:9–15Google Scholar
  63. Procaccini G, Buia MC, Gambi MC, Perez M, Pergent G, Pergent-Martini MC, Romero J (2003) The seagrasses of the western Mediterranean. In: Green EP, Short FT (eds) World Atlas of Seagrasses. Prepared by the UNEP World Conservation Monitoring Centre. University of California Press, Berkeley, pp 48–58Google Scholar
  64. Ramos Esplá AA (1984) Cartografia de la pradera superficial de Posidonia oceanica en la bahia de Alicante (SE, Espana). In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) International workshop on Posidonia oceanica beds. GIS Posidonie Publications, France, pp 57–61Google Scholar
  65. Romero J, Pérez M, Mateo MA, Sala E (1994) The belowground organs of the Mediterranean seagrass Posidonia oceanica as a biogeochemical sink. Aquat Bot 47:13–19CrossRefGoogle Scholar
  66. Sánchez Jerez P, Barberá Cebrián C, Ramos Esplá AA (1999) Daily vertical migrations in the epifauna associated with Posidonia oceanica meadows. J Mar Biol Assoc UK 79:971–977CrossRefGoogle Scholar
  67. Somaschini A, Gravina MF, Ardizzone GD (1994) Polychaete depth distribution in a Posidonia oceanica bed (rhizome and matte strata) and neighbouring soft and hard bottoms. PSZNI Mar Ecol 15:133–151CrossRefGoogle Scholar
  68. Scipione MB (1999) Amphipod biodiversity in the foliar stratum of shallow-water Posidonia oceanica beds in the Mediterranean Sea. In: Schram FR, von Vaupel Klein JC (eds) Crustaceans and the biodiversity crisis. Proceedings of the 4th international crustacean congress, Amsterdam, July 20–24, pp 649–662Google Scholar
  69. Stapel J, Erftemeijer PLA (2000) Leaf harvesting by burrowing alpheid shrimps in a Thalassia hemprichii meadow in south Sulawesi, Indonesia. Biol Mar Med 7:282–285Google Scholar
  70. Terrados J, Duarte CM (2000) Experimental evidence of reduced resuspension within a seagrass (Posidonia oceanica L.) meadow. J Exp Mar Biol Ecol 243:45–53CrossRefGoogle Scholar
  71. Underwood AJ (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge University Press, Cambridge, 504 ppGoogle Scholar
  72. Vaccarella R, Pastorelli AM, De Zio V (1981) Metodologie di prelievo: popolamenti a polichaeti in ‘mattes’ di Posidonia. Thal Sal 11:3–13Google Scholar
  73. Virnstein RW (1987) Seagrass-associated invertebrate communities of the southeastern U.S.A.: a review. Fla Mar Res Publ 42:89–116Google Scholar
  74. Virnstein RW, Mikkelsen PS, Cairns KD, Capone MA (1983) Seagrass beds versus sand bottoms: the trophic importance of their associated benthic invertebrates. Fla Sci 46:491–509Google Scholar
  75. Walkley A, Black IA (1934) An examination of the Deptjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  76. Webster PJ, Rowden AA, Attrill MJ (1998) Effect of shoot density on the infaunal macro-invertebrate community within a Zostera marina seagrass bed. Est Coast Shelf Sci 47:351–357CrossRefGoogle Scholar
  77. Willsie A (1983) Zonation de la macrofauna endogée de la matte d’herbier de Posidonia oceanica (L.) Delile. Rapp Comm Int Mer Méd 28:165–168Google Scholar
  78. Wittman KJ, Scipione MB, Fresi E (1981) Some Laboratory experiments on the activity of the macrofauna in the fragmentation of detrital leaves of Posidonia oceanica (L.) Delile. Rapp Comm Int Mer Méd 27:205–206Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. A. Borg
    • 1
    • 2
  • A. A. Rowden
    • 1
    • 3
  • M. J. Attrill
    • 1
  • P. J. Schembri
    • 2
  • M. B. Jones
    • 1
  1. 1.School of Biological SciencesUniversity of PlymouthPlymouthUK
  2. 2.Department of BiologyUniversity of MaltaMsidaMalta
  3. 3.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand

Personalised recommendations