Marine Biology

, Volume 149, Issue 3, pp 483–489 | Cite as

Living in the front: Neomysis americana (Mysidacea) in the Río de la Plata estuary, Argentina-Uruguay

  • A. SchiaritiEmail author
  • A. D. Berasategui
  • D. A. Giberto
  • R. A. Guerrero
  • E. M. Acha
  • H. W. Mianzan
Research Article


The Río de la Plata is one of the main estuarine systems of South America. It is characterized by a salt wedge regime, a well-developed bottom salinity front, and a maximum turbidity zone associated with it. We described, for the first time, the spatial distributional patterns of Neomysis americana, the most abundant mysid and the main food item for juvenile fishes in this estuary. We analyzed the link between mysid distribution and abundance and the bottom salinity gradient. A total of 242 plankton samples were taken from the Río de la Plata estuary in spring and fall between 1991 and 2001. Bottom salinity gradient was quantified from grids created on the basis of 348 oceanographic stations. The N. americana population was characterized by high abundances (up to 2500 ind. m−3), with juveniles, males, gravid and non-gravid females present in both spring and fall of different years. N. americana distribution followed the position of the bottom salinity front in different years and seasons. Pearson’s correlation analysis between mysid abundance and bottom salinity gradient confirmed the association of mysids with the bottom salinity front (maximum salinity gradient). No correlation was detected between mysid abundance and salinity per se or temperature (neither in spring nor in fall). We speculate that mysids concentrated at the front could take advantage of the high concentration of detrital material for feeding. The results of our work highlight the importance of the magnitude of salinity gradient for the ecological processes of a salt-wedge estuary like the Río de la Plata. The analysis of the spatial distribution of gradient values presented in this work also constitutes a useful tool to locate key ecological areas such as fronts.


Salinity Gradient Bottom Salinity Patos Lagoon Maximum Turbidity Zone Salt Wedge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank to M.C. Rodríguez and J. Dadón for their helpful comments on the manuscript, to M.D. Viñas for their assistance, and to F.C. Ramírez for their help on the mysid species identification. Satellite image was acquired by the CONAE (Falda del Carmen, Córdoba, Argentina) and processed by D.A. Gagliardini. This work was partially supported by UNMdP EXA 277/03, Fundación Antorchas N° 13900-13; Agencia PICT 2000 N° 07-08424 and PICT 2003 N° 07-13659; CONICET PIP 5009. This is INIDEP contribution N° 1365.


  1. Acha EM, Mianzan HW, Lasta CA, Guerrero RA (1999) Estuarine spawning of the whitemouth croaker Micropogonias furnieri (Pisces: Sciaenidae), in the Río de la Plata, Argentina. Mar Freshwater Res 50:57–65CrossRefGoogle Scholar
  2. Acha EM, Mianzan HW, Iribarne O, Gagliardini DA, Lasta CA, Daleo P (2003) The role of the Río the la Plata bottom salinity front in accumulating debris. Mar Pollut Bull 46:197–202CrossRefPubMedCentralGoogle Scholar
  3. Allen DM (1975) Maintenance of the mysid crustacean Neomysis americana (Smith) in closed synthetic sea water systems. Reprint Ser. 4, Lehigh University, Wetlands InstGoogle Scholar
  4. Baldó F, Taracido LJ, Arias AM, Drake P (2001) Distribution and life history of the mysid Rhopalophthalmus mediterraneus in the Guadalquivir estuary (SW Spain). J Crustacean Biol 21:961–972CrossRefGoogle Scholar
  5. Bond-Buckup G, Gomes Tavares LM (1998) Malacostraca - Peracarida. Mysidacea. In: Youngs PS (ed) Catalogue of crustacea of Brazil, Museu Nacional, Rio de Janeiro, pp 525–531Google Scholar
  6. CARP (1989) Estudio para la evaluación de la contaminación en el Río de la Plata. Comisión administradora del Río de la Plata, Montevideo-Buenos Aires, Informe de Avance, pp 1–72Google Scholar
  7. Cressie NAC (1990) The origins of kriging. Math Geol 22:239–252CrossRefGoogle Scholar
  8. Dodson JJ, Dauvin JC, Ingram RG, D’Anglejan B (1989) Abundance of larval rainbow smelt (Osmerus mordax) in relation to the maximum turbidity zone and associated macroplanktonic fauna of the middle St. Lawrence Estuary. Estuaries 12:66–81CrossRefGoogle Scholar
  9. Dyer KR (1995) Sediment transport processes in estuaries. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Developments in sedimentology. Elsevier Science B. V., Amsterdam, pp 423–449CrossRefGoogle Scholar
  10. Firpo C (2002) Variación estacional del zooplancton en el sector estuarial de la laguna de Mar Chiquita. Su relación con algunas variables ambientales. M.Sc. Thesis. Universidad Nacional de Mar del Plata, Mar del Plata, pp 56Google Scholar
  11. Framiñán MB, Brown OB (1996) Study of the Río de La Plata turbidity front, Part I: spatial and temporal distribution. Cont Shelf Res 16:1259–1282CrossRefGoogle Scholar
  12. Giberto DA, Bremec CS, Acha EM, Mianzan HW (2004) Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Río de la Plata estuary and adjacent shelf waters. Estua Coast Shelf S 61:1–13CrossRefGoogle Scholar
  13. González LA (1974) Hallazgo de Neomysis americana Smith (1873) (Crustacea: Mysidacea) en el Río de la Plata. Revista de Biología del Uruguay 2:119–130Google Scholar
  14. Greenwood JG, Jones MB, Greenwood J (1989) Salinity effects on brood maturation of the mysid crustacean Mesopodopsis slabberi. J Mar Biol Assoc UK 69:683–694CrossRefGoogle Scholar
  15. Guerrero RA, Acha EM, Framiñán MB, Lasta CA (1997) Physical oceanography of the Río de la Plata estuary, Argentina. Cont Shelf Res 17:727–742CrossRefGoogle Scholar
  16. Hoffmeyer MS (1990) The occurrence of Neomysis americana in two new localities of the South American coast (Mysidacea). Crustaceana 58:187–192CrossRefGoogle Scholar
  17. Hopkins TL (1965) Mysid shrimp abundance in surface waters of Indian river inlet, Delaware. Chesapeake Sci 6:86–91CrossRefGoogle Scholar
  18. Hulburt EM (1957) The distribution of Neomysis americana in the estuary of Delaware river. Limnol Oceanogr 2:1–11CrossRefGoogle Scholar
  19. Jaureguizar AJ, Bava J, Carozza C, Lasta CA (2003) Distribution of the whitemouth croaker Micropogonias furnieri in relation to environmental factors at the Río the la Plata estuary, South America. Mar Ecol-Prog Ser 255:271–282CrossRefGoogle Scholar
  20. Largier JL (1993) Estuarine fronts: How important are they? Ecology 16:1–11Google Scholar
  21. Leta H (1987) Contribución al conocimiento de la alimentación de la pescadilla de red. Publicación de la Comisión Técnica Mixta del Frente Marítimo 3:77–78Google Scholar
  22. Mauchline J (1980) The Biology of Mysids. In: Blaxter JH, Russell M, Yonge M (eds) Advances in marine biology. Academic, London, pp 681Google Scholar
  23. Mees J, Jones MB (1997) The Hyperbenthos. Oceanogr Mar Biol 35:221–255Google Scholar
  24. Mianzan HW, Lasta C, Acha EM, Guerrero R, Machi G, Bremec C (2001) The Río de la Plata Estuary, Argentina-Uruguay. In: Seeliger U, de Lacerda LD, Kjerve B (eds) Ecological studies: coastal marine ecosystems of Latin America. Springer-Verlag, Berlin, pp 185–204CrossRefGoogle Scholar
  25. Moffat AM, Jones MB (1993) Correlation of the distribution of Mesopodopsis slabberi (Crustacea, Mysidacea) with physico-chemical gradients in a partially mixed estuary (Tamar, England). Neth J Aquat Ecol 27:155–162CrossRefGoogle Scholar
  26. Murano M (1999) Mysidacea. In: Boltovskoy D (ed) South Atlantic zooplankton. Blackuys Publishers, Leiden, pp 1099–1140Google Scholar
  27. Parker M, West B (1979) The natural history of Neomysis integrer (Leach) in Lough Furnace, Co. Mayo, a brackish lough in the west of Ireland. Estuar Coast Shelf S 8:157–167CrossRefGoogle Scholar
  28. Pezzack DS, Corey S (1979) The life history and distribution of Neomysis americana (Smith) (Crustacea, Mysidacea) in Passamaquoddy Bay. Can J Zoolog 57:785–793CrossRefGoogle Scholar
  29. Rippingale RJ, Hodgkin EP (1977) Food availability and salinity tolerance in a brackish water copepod. Aust J Mar Fresh Res 28:1–7CrossRefGoogle Scholar
  30. Roddie BD, Leakey RJG, Berry AJ (1984) Salinity-temperature tolerance and osmoregulation in Eurytemora affinis (Poppe) (Copepoda: Calanoida) in relation to its distribution in the zooplankton of the upper reaches of the forth estuary. J Exp Mar Biol Ecol 79:191–211CrossRefGoogle Scholar
  31. Sánchez F, Marí N, Lasta C, Gianglobbe A (1991) Alimentación de la corvina rubia (Micropogonias furnieri) en la Bahía Samborombón. Frente Marítimo 8:43–50Google Scholar
  32. Sardiña P, López Cazorla AC (2005) Feeding habits of the juvenile striped weakfish, Cynoscion guatucupa Cuvier 1830, in Bahía Blanca estuary (Argentina): seasonal and ontogenetic changes. Hydrobiologia 532:23–28CrossRefGoogle Scholar
  33. Schiariti A, Lagos AN, Mianzan HW, Acha EM, Ramírez FC (2003) Análisis de las distribuciones espaciales de misidáceos (Neomysis americana) y juveniles de corvina rubia (Micropogonias furnieri) en el estuario del Río de la Plata. V Jornadas Nacionales de Ciencias del Mar. Mar del Plata, pp 170Google Scholar
  34. Schubel JR (1968) Turbidity maximum of the Northern Chesapeake Bay. Science 161:1013–1015CrossRefPubMedCentralGoogle Scholar
  35. Secor DH, Houde ED (1995) Temperature effects on the timing of stripped bass egg production, larval viability, and recruitment potential in the Patuxent river (Chesapeake Bay). Estuaries 18:527–544CrossRefGoogle Scholar
  36. Sokal RR, Rohlf FJ (1999) Introducción a la Bioestadística. Editorial Reverté, SA, BarcelonaGoogle Scholar
  37. Sorarrain DR 1998. Cambios estacionales en la biomasa de organismos gelatinosos en relación con otros zoopláncteres en la Bahía Samborombón. M.Sc. Thesis. Universidad Nacional de Mar del Plata, Mar del Plata, pp 35Google Scholar
  38. Uncles RJ, Stephens JA (1993) The freshwater-saltwater interface and its relationship to the turbidity maximum in the Tamar estuary, United Kingdom. Estuaries 16:126–141CrossRefGoogle Scholar
  39. Urien CM (1972) Río de la Plata estuarine environment. Geol Soc Am Mem 133:213–233Google Scholar
  40. Verslycke T, Janssen CR (2002) Effects of a changing abiotic environment on the energy metabolism in the estuarine mysid shrimp Neomysis integrer (Crustacea: Mysidacea). J Exp Mar Biol Ecol 279:61–72CrossRefGoogle Scholar
  41. Viherluoto M, Viitasalo M (2001) Temporal variability in functional responses and prey selectivity of the pelagic mysid, Mysis mixta, in natural prey assemblages. Mar Biol 138:575–583CrossRefGoogle Scholar
  42. Williams R, Collins NR (1984) Distribution and variability in abundance of Schistomysis spiritus (Crustacea, Mysidacea) in the Bristol Channel in relation to environmental variables, with comments on other mysids. Mar Biol 80:197–206CrossRefGoogle Scholar
  43. Winkler G, Dodson JJ, Bertrand N, Thivierge D, Vincent WF (2003) Trophic coupling across the St. Lawrence river estuarine transition zone. Mar Ecol- Prog Ser 251:59–73CrossRefGoogle Scholar
  44. Zagursky G, Feller RJ (1985) Macrophyte detritus in the winter diet of the estuarine mysid, Neomysis americana. Estuaries 8:355–362CrossRefGoogle Scholar
  45. Zimmerman DL, Zimmerman MB (1991) A comparison of spatial semivariogram estimators and corresponding ordinary kriging predictors. Technometrics 33:77–91CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. Schiariti
    • 1
    • 2
    Email author
  • A. D. Berasategui
    • 1
    • 2
  • D. A. Giberto
    • 1
    • 2
  • R. A. Guerrero
    • 1
    • 3
  • E. M. Acha
    • 1
    • 2
    • 3
  • H. W. Mianzan
    • 1
    • 2
  1. 1.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina
  2. 2.Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Facultad de Cs. Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina

Personalised recommendations