Advertisement

Marine Biology

, Volume 149, Issue 2, pp 339–346 | Cite as

Evidence of reverse development in Leptomedusae (Cnidaria, Hydrozoa): the case of Laodicea undulata (Forbes and Goodsir 1851)

  • D. De Vito
  • S. Piraino
  • J. Schmich
  • J. Bouillon
  • F. Boero
Research Article

Abstract

Laboratory rearing and reconstruction of Laodicea undulata (Hydrozoa) life cycle led to the discovery for the first time in Leptomedusae of the potential for ontogeny reversal, i.e. the medusa stage can asexually transform back into the polyp stage. In turn, each rejuvenated polyp stage can newly activate the standard developmental programme towards colony morphogenesis and budding of secondary medusae. These can be considered as clonemates of the initial medusa batch, since they originate by asexual processes. In combination with the ordinary medusa budding process, the potential for reverse development might represent a tool to increase jellyfish population growth rate during the favourable season, but eventually it does not avoid jellyfish to die. Comparably to polyembryony, reverse development leads to offspring multiplication from a single fertilization event, with a wider dispersal of each single genotype; eventually, it favours the enhancement of the overall genetic diversity at small spatial scale. The life cycle of L. undulata from the Mediterranean Sea is re-described, linking previously uncoupled descriptions of either the polyp or the early medusa stages. Taxonomic considerations of the genus Laodicea and a comparison among the known Mediterranean species are also provided.

Keywords

Hydroid Laboratory Rear Reverse Development Larval Metamorphosis Hydroid Coloni 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial supports were provided by MURST (60%, COFIN, and FIRB Projects), the Administration of the Province of Lecce, ICRAM (Project “Identificazione e distribuzione delle specie non indigene nel Mediterraneo”), the European Union (Marie Curie contract no. HPMD-CT-2001-00099, and the MARBEF network), the NSF of the USA (PEET project on the Hydrozoa). We are grateful to Cristina Di Camillo for drawings of L. undulata. Special thanks are due to Adam Benovic and Alenka Malej for their kind translation of part of the original paper by Babnik (1948).

References

  1. Agassiz L (1860) Contributions to the Natural History of the United States of America. Second monograph 3:i–xi, 1–301Google Scholar
  2. Agassiz A, Mayer AG (1899) Acalephs from the Fiji Islands. Bull Mus comp Zool Harv 32:157–189Google Scholar
  3. Babnik P (1948) Hidromeduze iz srednjega in junega Jadrana v letih 1939 in 1940 Hydromedusae from the middle and South Adriatic 1939 and 1940. Acta Adriat 3:275–340Google Scholar
  4. Bavestrello G, Sommer C, Sarà M (1992) Bi-directional conversion in Turritopsis nutricula (Hydrozoa). In: Bouillon J, Boero F, Cicogna F, Gili JM, Hughes RG (eds) Aspects of Hydrozoan biology. Sci Mar 56:137–140Google Scholar
  5. Berrill NJ (1953) Growth and form in gymnoblastic hydroids. VII. Growth and reproduction in Syncoryne and Coryne. J Morphol 92:273–302CrossRefGoogle Scholar
  6. Boero F (1984) The ecology of marine hydroids and effects of environmental factors: a review. Pubbl Stn Zool Napoli I Mar Ecol 5:93–118CrossRefGoogle Scholar
  7. Boero F, Sarà M (1987) Motile sexual stages and evolution of Leptomedusae (Cnidaria). Boll Zool 54:131–139CrossRefGoogle Scholar
  8. Boero F, Balduzzi A, Bavestrello G, Caffa B, Cattaneo Vietti R (1986) Population dynamics of Eudendrium glomeratum (Cnidaria: Anthomedusae) on the Portofino promontory (Ligurian Sea). Mar Biol 92:81–85CrossRefGoogle Scholar
  9. Boero F, Bouillon J, Piraino S (1992) On the origins and evolution of hydromedusan life cycles (Cnidaria, Hydrozoa). In: Dallai R (ed) Sex origin and evolution. Selected symposia and monographs UZI 6:59–68Google Scholar
  10. Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, Schmid V (1998) The cnidarian premises of metazoan evolution: from triploblasty, to coelom formation, to metamery. Ital J Zool 65:5–9CrossRefGoogle Scholar
  11. Boero F, Bouillon J, Piraino S, Schmid V (2002) Asexual reproduction in the Hydrozoa (Cnidaria). In: Hughes RN (ed) Reproductive biology of invertebrates. Volume XI: Progress in asexual reproduction. Oxford and IBH, New Delhi, pp 141–158Google Scholar
  12. Bouillon J, Boero F (2000) Phylogeny and classification of Hydroidomedusae. The Hydrozoa: a new classification in the light of old knowledge. Thalassia Salentina 24:1–46Google Scholar
  13. Bouillon J, Medel MD, Pagès F, Gili JM, Boero F, Gravili C (2004) Fauna of the Mediterranean Hydrozoa. Sci Mar 68(2):1–449Google Scholar
  14. Brinckmann-Voss A (1970) Anthomedusae/Athecata (Hydrozoa, Cnidaria) of the Mediterranean. Part I. Capitata. Fauna Flora Golfo di Napoli, Stazione Zoologica Anton Dohrn, Napoli, 39:1–96Google Scholar
  15. Browne ET (1907) A revision of the medusae belonging to the family Laodiceidae. Ann Mag Nat Hist 20:457–480CrossRefGoogle Scholar
  16. Cornelius PFS (1995) North-West European Thecate Hydroids and their medusae. Part 1. Laodiceidae to Haleciidae. In: Barnes RSK, Crothers JH (eds) Synopses of the British fauna (new series). The Linn Soc London and Est Coas Sci Assoc Field Studies Council, Shrewsbury, 50:1–347Google Scholar
  17. Craig SF, Slobodkin LB, Wray GA, Biermann CH (1997) The ‘paradox’ of polyembryony: a review of the cases and a hypothesis for its evolution. Evol Ecol 11:127–143CrossRefGoogle Scholar
  18. Forbes E, Goodsir J (1851) On some remarkable marine Invertebrata new to the British Seas. Trans R Soc Edinb 20:307–315CrossRefGoogle Scholar
  19. Frey J (1968) Die Entwicklungsleistungen der Medusenknospen und Medusen von Podocoryne carnea M Sars nach Isolation und Dissoziation. Wilhelm Roux’ Arch Entwicklungsmech Org 160:428–464CrossRefGoogle Scholar
  20. Giard A (1898) Sur l’éthologie du Campanularia caliculata Hincks (Stolonisation et allogonie). C R Soc Biol 5:17–20Google Scholar
  21. Gili JM, Hughes RG (1995) The ecology of marine benthic hydroids. Oceanogr Mar Biol Annu Rev 33:351–426Google Scholar
  22. Gravier N (1970) Libération des médusoides par Macrorhynchia philippina Kirchenpauer, 1872 (Hydrozoa, Plumulariidae). Recl Trav Stn Mar Endoume 10:253–257Google Scholar
  23. Hadzi J (1909) Einige Kapitel aus der Entwicklungsgeschichte von Chrysaora. Arb Zool Inst Univ Wien 17:17–44Google Scholar
  24. Hincks T (1868) A history of the British hydroid zoophytes. John Van Voorst, Paternoster Row, LondonCrossRefGoogle Scholar
  25. Kramp PL (1927) The hydromedusae of the Danish waters. K Dan Vidensk Selsk Biol Skr Afd 8(12):1–290Google Scholar
  26. Kramp PL (1959) The Hydromedusae of the Atlantic Ocean and adjacent waters. Dana-Reports Carlsberg Found 46:1–283Google Scholar
  27. Kubota S (2005) Distinction of two morphotypes of Turritopsis nutricula Medusae (Cnidaria, Hydrozoa, Anthomedusae) in Japan, with reference to their different abilities to revert to the hydroid stage and their distinct geographical distributions. Biogeography 7:41–50Google Scholar
  28. Kubota S, Mizutani S (2003) Strange fates of degenerated medusae of Turritopsis nutricula (Hydrozoa, Anthomedusae, Clavidae) from northern Japan. Nanki Seibutu 45:107–109Google Scholar
  29. Metschnikoff E (1886) Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. Verlag Alfred Hölder, k.k. Hof-u Universitäts-Buchhändler, WienGoogle Scholar
  30. Piraino S, Todaro C, Geraci S, Boero F (1994) Ecology of the bivalve-inhabiting hydroid Eugymnanthea inquilina in the coastal sounds of Taranto (Ionian Sea, SE Italy). Mar Biol 118:695–703CrossRefGoogle Scholar
  31. Piraino S, Boero F, Aeschbach B, Schmid V (1996) Reversing the life cycle: medusae transforming into polyps and cell transdifferentiation in Turritopsis nutricula (Cnidaria, Hydrozoa). Biol Bull 190:302–312CrossRefGoogle Scholar
  32. Piraino S, De Vito D, Schmich J, Bouillon J, Boero F (2004) Reverse development in Cnidaria. Can J Zool 82:1748–1754CrossRefGoogle Scholar
  33. Russell FS (1936) On the hydroid of Laodicea undulata (Forbes and Goodsir). J Mar Biol Assoc UK 20:581–588CrossRefGoogle Scholar
  34. Russell FS (1938) The Plymouth offshore medusae fauna. J Mar Biol Assoc UK 22:411–440CrossRefGoogle Scholar
  35. Russell FS (1953) The medusae of the British Isles. Anthomedusae, Leptomedusae, Limnomedusae, Trachymedusae and Narcomedusae. Cambridge University Press, CambridgeGoogle Scholar
  36. Schmid V (1972) Untersuchungen über Dedifferenzierungsvorgänge bei Medusenknospen und Medusen von Podocoryne carnea M Sars. Wilhelm Roux’ Arch Entwicklungsmech Org 169:281–307CrossRefGoogle Scholar
  37. Schmid V (1992) Transdifferentiation in medusae. Int Rev Cytol 142:213–261CrossRefGoogle Scholar
  38. Schmidt HE (1973) Hydromedusae from the eastern Mediterranean Sea. Isr J Zool 22:151–167Google Scholar
  39. Schuchert P (2004) Revision of the European athecate hydroids and their medusae (Hydrozoa, Cnidaria): families Oceanidae and Pachycordylidae. Rev Suisse Zool 111:315–369CrossRefGoogle Scholar
  40. Spring J, Yanze N, Middel AM, Stierwald M, Gröger H, Schmid V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev Biol 228:363–375CrossRefGoogle Scholar
  41. Stefani R (1959) Sulla variabilità ecologica di un Idrozoo (Campanularia caliculata Hincks). Boll Zool 26:115–120CrossRefGoogle Scholar
  42. Yanze N, Spring J, Schmidli C, Schmid V (2001) Conservation of Hox/ParaHox-related genes in the early development of a cnidarian. Dev Biol 236:89–98CrossRefPubMedCentralGoogle Scholar
  43. Werner B (1954) On the development and reproduction of the anthomedusan, Margelopsis haeckeli Hartlaub. Trans NY Acad Sci 16:143–146CrossRefGoogle Scholar
  44. Werner B (1963) Effect of some environmental factors on differentiation and determination in marine Hydrozoa, with a note on their evolutionary significance. Ann NY Acad Sci 105:461–488Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • D. De Vito
    • 1
  • S. Piraino
    • 1
  • J. Schmich
    • 1
  • J. Bouillon
    • 1
  • F. Boero
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie Biologiche ed AmbientaliUniversità di LecceLecceItaly

Personalised recommendations