Marine Biology

, Volume 148, Issue 4, pp 867–873 | Cite as

RFLP analysis of the mtDNA control region in white shrimp (Litopenaeus vannamei) populations from the eastern Pacific

  • R. Valles-Jimenez
  • P. M. Gaffney
  • R. Perez-EnriquezEmail author
Research Article


White shrimp (Litopenaeusvannamei) population genetic structure from the eastern Pacific was determined by restriction fragment length polymorphism analysis of the mitochondrial DNA control region. Four localities were surveyed with four endonucleases (Alu I, Taq I, Spe I, Ssp I) yielding 48 composite haplotypes. White shrimp showed high average within-locality haplotype (0.823) and nucleotide (5.41%) diversities and also high average nucleotide divergence between all pairs of localities (0.73%). A mismatch analysis of pairwise differences between haplotypes indicated that white shrimp does not fit the sudden population expansion model. An analysis of molecular variance showed significant geographic variation in the frequencies of haplotypes (ΦST=0.1382, P<0.0001). Population differentiation may be maintained by a combination of physical, oceanographic, and biological factors acting as barriers to gene flow among localities. Because of its high polymorphism, the control region might be useful as a genetic marker for monitoring genetic diversity in aquaculture stocks.


Control Region White Shrimp Shrimp Species Litopenaeus Vannamei Fishery Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Funding was provided by CONACYT (33496-V) and FOMIX Nayarit-CONACYT (2003-COI-9661) grants to R.P.E. The first author is a CONACYT graduate fellow (85938) and is grateful to the College of Marine Studies, University of Delaware, for the facilities provided during a research stay. Thanks to F. Garcia for his advice about the REAP program.


  1. Aubert H, Lightner DV (2000) Identification of genetic populations of the Pacific blue shrimp Penaeus stylirostris of the Gulf of California, Mexico. Mar Biol 137:875–885CrossRefGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkCrossRefGoogle Scholar
  3. Benzie JAH (2000) Population genetic structure in penaeid prawns. Aquacult Res 30:95–119CrossRefGoogle Scholar
  4. Castro JA, Picornell A, Ramon M (1998) Mitochondrial DNA: a tool for populational genetics studies. Int Microbiol 1:327–332PubMedGoogle Scholar
  5. Chappell J (2002) Sea level changes forced ice breakouts in the last Glacial cycle: new results from coral terraces. Quaternary Sci Rev 21:1229–1240CrossRefGoogle Scholar
  6. Chakraborty R (1990) Mitochondrial DNA polymorphism reveals hidden heterogeneity within some Asian populations. Am J Hum Genet 47:87–94PubMedPubMedCentralGoogle Scholar
  7. Chu KH, Li CP, Tam YK, Lavery S (2003) Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Mol Ecol Notes 3:120–122CrossRefGoogle Scholar
  8. De la Rosa-Velez J, Escobar R, Correa F, Félix E (1999) High allozyme variation and genetic similarity of two populations of commercial penaeids, Penaeus brevirostris (Kingsley) and P. vannamei (Boone), from the Gulf of California. J R Stat Soc 30:459–463Google Scholar
  9. Dore I, Frimodt C (1987) An illustrated guide to shrimp of the world. Osprey Books, HuntingtonGoogle Scholar
  10. Duda TF Jr, Palumbi SR (1999) Population structure of the black tiger prawn, Penaeus monodon, among western Indian Ocean and western Pacific populations. Mar Biol 134:705–710CrossRefGoogle Scholar
  11. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedPubMedCentralGoogle Scholar
  12. Felsenstein J (1993) Phylip (Phylogeny Inference Package), version 3.6c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  13. Féral JP (2002) How useful are the genetic markers in attempts to understand and manage marine biodiversity? J Exp Mar Biol Ecol 268:121–145CrossRefGoogle Scholar
  14. Garcia DK, Faggart MA, Rhoades L, Alcivar-Warren AA (1994) Genetic diversity of cultured Penaeus vannamei shrimp using three molecular genetic techniques. Mol Mar Biol Biotech 5:270–280Google Scholar
  15. Garcia-Machado E, Robainas A, Espinosa G, Oliva M, Páez J, Verdecia N, Monnerot M (2001) Allozyme and mitochondrial DNA variation in Cuban populations of the shrimp Farfantepenaeus notialis (Crustacea: Decapoda). Mar Biol 138:701–707CrossRefGoogle Scholar
  16. Graves JE, McDowell JR (1994) Genetic analysis of striped marlin (Tetrapturus audax) population structure in the Pacific Ocean. Can J Fish Aquat Sci 51:1762–1768CrossRefGoogle Scholar
  17. Harrison RG (1989) Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Tree 1:6–11Google Scholar
  18. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276CrossRefGoogle Scholar
  19. Hoolihan JP, Premanandh J, D’Aloia-Palmieri MA, Benzie JAH (2004) Intraspecific phylogeographic isolation of Arabian Gulf silfish Istiophorus platypterus inferred from mitochondrial DNA. Mar Biol 145:465–475CrossRefGoogle Scholar
  20. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedPubMedCentralGoogle Scholar
  21. Klinbunga S, Penman DJ, McAndrew BJ, Tassanakajon A, Jarayabhand P (1998) Genetic variation, population differentiation, gene flow of the giant tiger shrimp (Penaeus monodon) inferred from mtDNA-RFLP data. In: Flegel TW (ed) Advances in shrimp biotechnology. National Center for Genetic Engineering and Biotechnology, BangkokGoogle Scholar
  22. Klinbunga S, Penman DJ, McAndrew BJ, Tassanakajon A (1999) Mitochondrial DNA diversity in three populations of the Giant Tiger Shrimp Penaeus monodon. Mar Biotechnol 1:113–121CrossRefGoogle Scholar
  23. Klinbunga S, Siludjai D, Wudthijinda W, Tassanakajon A, Jarayabhand P, Menasveta P (2001) Genetic heterogeneity of Giant Tiger Shrimp (Penaeus monodon) in Thailand revealed by RAPD and mitochondrial DNA RFLP analyses. Mar Biotechnol 3:428–438CrossRefGoogle Scholar
  24. Lavery S, Morit C, Fielder DR (1996) Indo-Pacific population structure and evolutionary history of the coconut crab Birgus latro. Mol Ecol 5:557–570CrossRefGoogle Scholar
  25. Lunt DH, Lawrence E, Whipple E, Hyman BC (1998) Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology. Mol Ecol 7:1441–1455CrossRefGoogle Scholar
  26. Martínez-Córdova LR, Campaña-Torres A (1999) Especies de peneidos actuales y potenciales para el cultivo. In: Martinez LR (ed) Cultivo de camarones Peneidos: principios y prácticas. AGT, S. A. México, pp 23–38Google Scholar
  27. McElroy DM, Moran P, Bermingham E, Kornfield I (1991) REAP: an integrated environment for the manipulation and phylogenetic analysis of restriction data. J Hered 83:157–158CrossRefGoogle Scholar
  28. McMillen-Jackson AL, Bert TM (2003) Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern Unites States. Mol Ecol 12:2895–2905CrossRefGoogle Scholar
  29. McMillen-Jackson AL, Bert TM (2004) Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. J Crust Biol 24(1):101–109CrossRefGoogle Scholar
  30. Meyer A (1994) DNA technology and phylogeny of fish. In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman & Hall, London, pp 219–249Google Scholar
  31. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  32. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedPubMedCentralGoogle Scholar
  33. Raymond M, Rousset F (1995) GENEPOP (version 3.3): population genetics software for exact test and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  34. Rice WR (1989) Analyzing tables of statistical tests. Evolution 41:223–235CrossRefGoogle Scholar
  35. Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49:608–615CrossRefGoogle Scholar
  36. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Ecol Evol 9:552–569Google Scholar
  37. Rothlisberg PC (1982) Vertical migration and its effect on dispersal of penaeid shrimp postlarvae in the Gulf of Carpentaria, Australia. Fish Bull 80:541–554Google Scholar
  38. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000; a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, SwitzerlandGoogle Scholar
  39. Sunden SLF, Davis SK (1991) Evaluation of genetic variation in domestic population of Penaeus vannamei (Boone): a comparison with three natural populations. Aquaculture 97:131–142CrossRefGoogle Scholar
  40. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedPubMedCentralGoogle Scholar
  41. Thorpe JP, Solé-Cava AM, Watts PC (2000) Exploited marine invertebrates: genetics and fisheries. Hydrobiologia 420:165–184CrossRefGoogle Scholar
  42. Trasviña A, Lluch-Cota D, Filonov AE, Gallegos A (1999) Oceanografía y El Niño. In: Magaña VOR (ed) Los impactos de El Niño en México. UNAM, Mexico, pp 69–101Google Scholar
  43. Valles-Jimenez R, Cruz P, Perez-Enriquez R (2004) Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama: microsatellite DNA variation. Mar Biotechnol 6:475–484CrossRefGoogle Scholar
  44. Van Hooft WF, Groen AF, Prins HHT (2002) Phylogeography of the African buffalo based on mitochondrial and Y-chromosomal loci: Pleistocene origin and population expansion of the Cape buffalo subspecies. Mol Ecol 11:267–279CrossRefGoogle Scholar
  45. Ward RD (2000) Genetics in fisheries management. Hydrobiologia 420:191–201CrossRefGoogle Scholar
  46. Weir BS, Cockerham CC (1984) Estimation F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  47. Wolfus GM, Garcia DK, Alcivar-Warren AA (1997) Application of the microsatellite technique for analyzing genetic diversity in shrimp breeding programs. Aquaculture 152:35–47CrossRefGoogle Scholar
  48. Zhang D, Hewitt G (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • R. Valles-Jimenez
    • 1
  • P. M. Gaffney
    • 2
  • R. Perez-Enriquez
    • 1
    Email author
  1. 1.Aquaculture GeneticsCentro de Investigaciones Biológicas del Noroeste, S. C. (CIBNOR) MéxicoMexico
  2. 2.College of Marine StudiesUniversity of DelawareLewesUSA

Personalised recommendations