Marine Biology

, Volume 148, Issue 3, pp 621–629 | Cite as

Genetic differentiation of the California spiny lobster Panulirus interruptus (Randall, 1840) along the west coast of the Baja California Peninsula, Mexico

  • Francisco Javier García-Rodríguez
  • Ricardo Perez-EnriquezEmail author
Research Article


Identifying reproductive stocks in commercial species is relevant to fishery management strategies. We obtained muscle samples of California spiny lobster (Panulirus interruptus) from six localities along the west coast of the Baja California Peninsula and analyzed the genetic structure using mtDNA RFLPs. Our results indicated that all localities shared the same major haplotypes and showed a spatial homogeneity in the distribution of haplotype frequencies. An analysis of molecular variance indicated that only 0.84% of the genetic variability was explained by differences among localities and was not significantly different from zero. Weak divergences were found between Bahía Magdalena, the most southerly locality, in relation to other populations. Major oceanographic processes along this coast, combined with a long larval period that supports passive transport among localities, are suggested to explain the results.


Spiny Lobster Allozyme Locus Baja California Peninsula Marine Stewardship Council Lobster Fishery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank A. Vega at Instituto Nacional de la Pesca, Mexico, who partially supported this project through a SIMAC grant (No. 2000–7009). Our gratitude to Federación Regional de Sociedades Cooperativas de Producción Pesquera “Baja California,” for their continuous support of our research. We thank Nick Elliot and two anonymous reviewers for their valuable suggestions and criticism. We wish to thank researchers at CICESE: A. Trasviña for valuable comments about oceanographic processes in the Pacific Ocean and E. González for assistance in the use of Matlab Ver 7. The first author is a doctorate CONACYT fellow (No. 166720). The project received funds from CIBNOR (No. EP5.0/2004). Our thanks are also due to the editor at CIBNOR who improved the English text.


  1. Allendorf FW, Seeb W (2000) Concordance of genetic divergence among sockeye salmon populations at allozyme, nuclear DNA, and mitochondrial DNA markers. Evolution 54(2):640–651CrossRefGoogle Scholar
  2. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hill, New YorkCrossRefGoogle Scholar
  3. Ayala MY (1983) Madurez sexual y aspectos reproductivos de la langosta roja Panulirus interruptus (Randall 1840) en la costa oeste central de la península de Baja California, México. Secretaría de Pesca/INP. Ciencia Pesquera 4:33–48Google Scholar
  4. Badan A (1997) La Corriente Costera de Costa Rica en el Pacífico mexicano. In: Lavin MF (ed) Contribuciones a la oceanografía física de México. Monografía No. 3, Unión Geofísica Mexicana, pp 99–112Google Scholar
  5. Barker JSF, Moore SS, Hetsel DJS, Evans D, Tan SG, Byrne K (1997) Genetic diversity of Asian water buffalo (Bubalus bubalis): Microsatellite variation and a comparison with protein-coding loci. Anim Genet 28:103–115CrossRefGoogle Scholar
  6. Chow S, Okamoto H, Uozumi Y, Takeuchi Y, Takeyama H (1997) Genetic stock structure of the swordfish (Xiphias gladius) inferred by PCR-RFLP analysis of the mitochondrial DNA control region. Mar Biol 127(3):359–367CrossRefGoogle Scholar
  7. Clark FN (1947) Analysis of population of the Pacific sardine on the basis of vertebral counts. Fish Bull 65:1–26Google Scholar
  8. Comeau M, Savoie F (2002) Movement of American lobster (Homarus americanus) in the southewastern Gulf of St. Lawrence. Fish Bull 100:181–102Google Scholar
  9. Cope JM (2004) Population genetics and phylogeography of the blue rockfish (Sebastes mystinus) from Washington to California. Can J Fish Aquat Sci 61:332–342CrossRefGoogle Scholar
  10. Durazo R, Baumgartner TR (2002) Evolution of oceanographic conditions off Baja California: 1997–1999. Prog Oceanog 54:7–31CrossRefGoogle Scholar
  11. Excoffier L, Smouse PE, Quattro JM (1992) Analyses of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491PubMedPubMedCentralGoogle Scholar
  12. Folmer O, Black M, Hoeh W, Lutz R, Vriejenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3(5):294–299PubMedGoogle Scholar
  13. García-Machado E, Robainas A, Espinosa G, Oliva M, Páez J, Verdecia N, Monnerot M (2001) Allozyme and mitochondrial DNA variation in Cuban populations of the shrimp Farfantepenaeus notialis (Crustacea: Decapoda). Mar Biol 138:701–707CrossRefGoogle Scholar
  14. Goerlitz DS, Urbán J, Rojas-Bracho L, Belson M, Schaeff CM (2003) Mitochondrial DNA variation among Eastern North Pacific gray whales (Eschrichtius robustus) on winter breeding grounds in Baja California. Can J Zool 81:1965–1972CrossRefGoogle Scholar
  15. Guzmán del Próo SA, Carreón-Paula LL, Belmar-Pérez J, Carrillo-Laguna J, Herrera-Fragoso R (2003) Effects of the “EL Niño” event on the recruitment of the benthic invertebrates in Bahía Tortugas, Baja California Sur. Geofís Int 42(3):429–438Google Scholar
  16. Harding G, Kenechington E, Bird CJ, Pezzack DS, Landry DC (1997) Genetic relationships among subpopulations of the American lobster (Homarus americanus) as revealed by random amplified polymorphic DNA. Can J Fish Aquat Sci 54:1762–1771CrossRefGoogle Scholar
  17. Hateley JG, Sleeter TD (1993) A biochemical genetic investigation of spiny lobster (Panulirus argus) stock replenishment in Bermuda. Bull Mar Sci 52(3):9993–1006Google Scholar
  18. Hedgecock D (1994) Temporal and spatial genetic structure of marine animal populations in the California Current. CalCOFI Rep 35:73–81Google Scholar
  19. Hendrickx ME (1995) Langostas (Langostas espinosas, bogavantes, cigarras y zapateras, langostas de lodo, etc.). In: Fisher W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (eds) Guia FAO para la identificación de especies para los fines de la pesca. Pacífico Centro-Oriental vol I. Plantas e invertebrados. F.A.O. Roma, pp 385–415Google Scholar
  20. Hewitt R (1981) Eddies and speciation in the California Current. CalCOFI Rep, vol XXIIGoogle Scholar
  21. Hoolihan JP, Premanandh J, D’Aloia-Palmieri MA, Benzie JAH (2004) Intraspecific phylogeographic isolation of Arabian Gulf sailfish Istiophorus platypterus inferred from mitochondrial DNA. Mar Biol 145(3):165–475CrossRefGoogle Scholar
  22. Hubbs C (1960) The marine vertebrate of the outer coast. Symp: the biogeography of Baja California and adjacent seas. Syst Zool 4:134–147CrossRefGoogle Scholar
  23. Johnson MW (1960) The offshore drift of larvae of the California spiny lobster Panulirus interruptus. CalCOFI Rep 7:147–161Google Scholar
  24. Karl S, Avise JC (1992) Balancing selection at allozyme loci in oyster: implications from nuclear RFLPs. Science 256:100–102CrossRefGoogle Scholar
  25. Koehn RK, Newell RIE, Immerman FW (1980) Maintenance of an aminopeptidase allele frequency cline by natural selection. Proc Natl Acad Sci USA 77:5385–5389CrossRefGoogle Scholar
  26. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Arizona State University, TempeGoogle Scholar
  27. McElroy D, Moran P, Bermingham E, Kornfield I (1991) The restriction enzymes analysis package Ver. 4. Department of Zoology Migratory Fish Research Institute and Center for Marines Studies, University of Maine, Orono, MaineGoogle Scholar
  28. McMillen-Jackson AL, Bert TM (2004) Genetic diversity in the mtDNA control region and population structure in the pink shrimp Farfantepenaeus duorarum. J Crustacean Biol 24(1): 101–109CrossRefGoogle Scholar
  29. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  30. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nat Acad Sci 76:5269–5273CrossRefGoogle Scholar
  31. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedPubMedCentralGoogle Scholar
  32. Nelson K, Hedgecock D (1980) Enzyme polymorphism and adaptive strategy in the decapod Crustacea. Am Nat 116:238–280CrossRefGoogle Scholar
  33. Nissen LR, Bjerregaard P, Simonsen V (2005) Interindividual variability in metal status in the shore crab Carcinus maenas: the role of physiological condition and genetic variation. Mar Biol 146(3): 571–580CrossRefGoogle Scholar
  34. Ovenden JR, Brasher DJ (1994) Stock identity of the red (Jasus edwardsii) and green (J. verreauxi) rock lobster inferred from mitochondrial DNA analysis. In: Philllips BF, Cobb JS, Kittaka J (eds) Spiny lobster management. Fishing News Books, pp 230–249Google Scholar
  35. Ovenden JR, Booth JD, Smolenski AJ (1997) Mitochondrial DNA phylogeny of red and green rock lobster (genus Jasus). Mar Freshwater Res 48: 1131–1136CrossRefGoogle Scholar
  36. Palumbi SR, Martin A, Romano S, McMillan WO, Stice L, Grabowski G (1991) A simple fool’s guide to PCR, v2.0 Special Publication of the University of Hawaii, Department of Zoology and Kewalo Marine Laboratory, p 123Google Scholar
  37. Perez-Enriquez R, Taniguchi N (1999) Genetic structure of red sea bream (Pagrus major) population off Japan and the Southwest Pacific, using microsatellite DNA marker. Fish Sci 1:23–30CrossRefGoogle Scholar
  38. Perez-Enriquez R, Vega A, Avila S, Sandoval JL (2001) Population genetics of red spiny lobster (Panulirus interruptus) along the Baja California Peninsula, Mexico. Mar Fresh Res 52:1541–1549CrossRefGoogle Scholar
  39. Pogson GH, Mesa KA, Boutilier RG (1995) Genetic population structure and gene flow in the Atlantic cod, Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139:375–385PubMedPubMedCentralGoogle Scholar
  40. Poteaux C, Berrebi P, Bonhomme F (2001) Allozymes, mtDNA and microsatellites study introgression in a stocked trout population in France. Rev Fish Biol Fish 10:281–292CrossRefGoogle Scholar
  41. Pringle JD (1986) California spiny lobster (Panulirus interruptus) larval retention and recruitment: A review and synthesis. Can J Fish Aquat Sci 43:2142–2152CrossRefGoogle Scholar
  42. Ptaceck MB, Sarver SK, Childress MJ, Herrnkind WF (2001) Molecular phylogeny of the spiny lobster genus Panulirus (Decapoda: Palinuridae). Mar Fresh Res 52:1037–1047CrossRefGoogle Scholar
  43. Rice WR (1989) Analyzing tables of statistic tests. Evolution 42:223–225CrossRefGoogle Scholar
  44. Roff DA, Bentzen P (1989) The statistical analysis of mitochondrial DNA polymorphisms: X2 and the problem of small samples. Mol Biol Evol 6(5):539–545PubMedGoogle Scholar
  45. Sarver SK, Silberman JD, Walsh PJ (1998) Mitochondrial DNA sequence evidence supporting the recognition of two subspecies or species of the Florida spiny lobster Panulirus argus. J Crust Biol 18(1):177–186CrossRefGoogle Scholar
  46. Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: A software for population genetics data analysis. Genetic and Biometry Laboratory, University of Genova, SwitzerlandGoogle Scholar
  47. Scribner KT, Arntzen JW, Burke T (1994) Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data. Mol Biol Evol 11:737–748PubMedGoogle Scholar
  48. Shaklee JB, Samollow PB (1984) Genetic variation and population structure in a spiny lobster, Panulirus marginatus, in the Hawaiian Archipielago. Fish Bull FAO 82:693–702Google Scholar
  49. Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolutionary in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487CrossRefGoogle Scholar
  50. Silberman JD, Sarver SK, Walsh PJ (1994a) Mitochondrial DNA variation and population structure in the spiny lobster Panulirus argus. Mar Biol 120:601–608CrossRefGoogle Scholar
  51. Silberman JD, Sarver SK, Walsh PJ (1994b) Mitochondrial DNA variation in seasonal cohorts of spiny lobster (Panulirus argus) postlarvae. Mol Mar Biol Biotechnol 3(3):165–170Google Scholar
  52. Skillman RA (1989) Stock identification and Billfish Management. Mar Rec Fish 13:207–214Google Scholar
  53. Straughan DJ, Lehman N (2000) Genetic differentiation among Oregon Lake populations of the Diaphus pulex species complex. The American Genetic Association 91:8–17CrossRefGoogle Scholar
  54. Tabata K, Mizuta A (1997) RFLP analysis of the mtDNA D-loop region in red sea bream Pagrus major population from four localizations of Western Japan. Fish Res 63(2):211–217Google Scholar
  55. Thompson AP, Hanley JR, Johnson MS (1996) Genetic structure of western rock lobsters, Panulirus cygnus, with the benefit of hindsight. Mar Fresh Res 47:889–896CrossRefGoogle Scholar
  56. Triantafyllidis A, Apostolidis AP, Katsares V, Kelly E, Mercer J, Hughes M, Jørstad KE, Tsolou A, Hynes R, Triantaphyllidis C. (2005) Mitochondrial DNA variation in the European lobster (Homarus gammarus) throughout the range. Mar Biol 146(2):223–235CrossRefGoogle Scholar
  57. Valentine J (1966) Numerical analysis of marine molluscan ranges on the extratropical northeastern Pacific shelf. Limn Oceanogr 11:198–211CrossRefGoogle Scholar
  58. Vega VA (2003) Reproductive strategies of the spiny lobster Panulirus interruptus related to the marine environmental variability off central Baja California, México: management implications. Fish Res 65:123–135CrossRefGoogle Scholar
  59. Vega VA, Espinoza-Castro G, Gómez-Rojo C (1996) Pesquería de la langosta Panulirus spp. In: Casas-Valdez M, Ponce-Diaz G (eds) Estudio del Potencial Pesquero y Acuícola de Baja California Sur, pp 227–261Google Scholar
  60. Vrooman A (1964) Serologically differentiation of subpopulations of the Pacific sardine, Sardinops caeruleus. J Fish Res Board Can 21(4):691–701CrossRefGoogle Scholar
  61. Watt WB (1977) Adaptation at specific loci. Natural selection on phosphoglucose isomerase of Colias butterflies: biochemical and population aspect. Genetic 87:177–194Google Scholar
  62. Weider LJ, Hobaek A, Crease TJ, Stibor H (1996) Molecular characterization of clonal population structure and biogeography of arctic apomictic Daphnia from Greenland and Iceland. Mol Ecol 5: 107–118CrossRefGoogle Scholar
  63. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  64. Wyrtki K (1967) Circulation and water mass in the eastern equatorial Pacific Ocean. Int J Oceanol Limnol 1(2):117–147Google Scholar
  65. Zeytsev O, Cervantes-Duarte R, Montante O, Gallegos-García A (2003) Coastal upwelling activity on the Pacific shelf of the Baja California Peninsula. J Oceanogr 59:489–502CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Francisco Javier García-Rodríguez
    • 1
  • Ricardo Perez-Enriquez
    • 1
    Email author
  1. 1.Centro de Investigaciones Biológicas del Noroeste (CIBNOR).Baja California SurMéxico

Personalised recommendations