Marine Biology

, Volume 148, Issue 3, pp 489–501 | Cite as

Sessile and non-sessile morphs of Geodia cydonium (Jameson) (Porifera, Demospongiae) in two semi-enclosed Mediterranean bays

  • M. Mercurio
  • G. CorrieroEmail author
  • E. Gaino
Research Article


Morphological plasticity and ecological aspects of the demosponge Geodiacydonium (Jameson) were studied from seasonal samples collected over 1 year in two semi-enclosed Mediterranean bays of the Southern Italian coast (Marsala lagoon and Porto Cesareo basin). Sponge specimens present two morphs: sessile and non-sessile, both of which showed constant size distribution and density over the studied year. Sessile specimens were larger in size than non-sessile ones. This feature is particularly evident at Porto Cesareo, where these sponges have a more compact skeletal network than at Marsala (evident both in the cortical spicule size and sponge silica content). Sessile specimens adhere to hard rocky substrates (Porto Cesareo) or phanerogam rhizomes (Marsala); non-sessile ones occur on soft bottom areas. Several morphological and structural features of the non-sessile forms differ in the two environments, but the difference in body shape seems to play the most relevant role in enhancing the colonization of incoherent substrates. Indeed, at Marsala, where the large amount of silt and clay determines the occurrence of a markedly reduced anoxic layer just below the surface of the sediment, non-sessile specimens of G. cydonium are fairly spherical and thus able to roll, dragged by slow circular currents. In addition, the usual association with the red alga Rytyphlöea tinctoria, which almost constantly forms a thick and continuous layer around the sponge, allows them to avoid contact with the substrate. The non-sessile specimens from Porto Cesareo inhabit sandy soft bottoms and are flattened. In such an environment, affected by moderate wave turbulence, the flattened shape widens the contact surface between the body and the substrate, thereby reducing the risk of stranding. The evident signs of abrasion, provided by scanning electron microscopy investigations, on both cortical spicules and outermost sponge surface suggest that sponges rub on the bottom. Sediment, epibiontic organisms, and the phanerogam leaves protect this sciaphilous sponge from high solar radiation, allowing the specimens to live in these shallow environments.


Sponge Silica Content Soft Bottom High Solar Radiation Mercurio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the Italian Ministero dell’Università e della Ricerca Scientifica e Tecnologica funds (ex MURST 40 and 60%). All the experiments complied with the current Italian laws.


  1. Ayling AL (1980) Patterns of sexuality, asexual reproduction and recruitment in some subtidal marine Demospongiae. Biol Bull 158:271–281CrossRefGoogle Scholar
  2. Bagander LE (1976) Redox measurements in natural waters and sediments. In: Dybern B, Ackefors H, Elmegren R (eds) Recommendations on methods for marine biological studies in the Baltic Sea. Department of Zoology, University of StockholmGoogle Scholar
  3. Barthel D, Tendal OS (1993) The sponge association of the abyssal Norwegian–Greenland Sea: species composition, substrate relationships and distribution. Sarsia 78:83–96CrossRefGoogle Scholar
  4. Battershill CN, Bergquist PR (1990) The influence of storms on asexual reproduction, recruitment and survivorship of sponges. In: Rutzlet K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 397–403Google Scholar
  5. Bell JJ (2004) Evidence for morphology-induced sediment settlement prevention on the tubular sponge Haliclona urceolus. Mar Biol 146:29–38CrossRefGoogle Scholar
  6. Bell JJ, Barnes DKA (2000) The influence of bathymetry and flow regime on the morphology of sublittoral sponge populations at Lough Hyne MNR. J Mar Biol Assoc UK 80:707–718CrossRefGoogle Scholar
  7. Bell JJ, Barnes DKA (2002) The relationship between sedimentation, flow rates, depth and time at Lough Hyne Marine Nature Reserve. Ir Nat J 27:106–116Google Scholar
  8. Bell JJ, Barnes DKA, Turner JR (2002) The importance of micro and macro morphological variation in adaptation of a sublittoral demosponge to current extremes. Mar Biol 140:75–81CrossRefGoogle Scholar
  9. Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284CrossRefGoogle Scholar
  10. Burton M (1932) Sponges. Discov Rep 6:237–392CrossRefGoogle Scholar
  11. Calcinai B, Bavestrello G, Boyer M, Cerrano C, Pansini M (2001) Poriferi biodemolitori e biocostruttori nella zona di marea della Bunaken Marine Reserve (North Sulawesi, Indonesia). Biol Mar Medit 8:201–208Google Scholar
  12. Calvo S, Fradà Orestano C (1984) L’herbier à Posidonia oceanica des côtes siciliennes: les formations recifales du Stagnone, vol 1. In: Boudouresque CF, Jeudy de Grissac A, Olivier J (eds) Int Work Posidonia oceanica Beds. Gis Posidonie, France, pp 29–37Google Scholar
  13. Congedo (1988) Studio ecologico dell’area marina di Porto Cesareo. Tiemme Industrie Grafiche. Galatina, LecceGoogle Scholar
  14. Corriero G (1989) The sponge fauna from the Stagnone di Marsala (Sicily): taxonomic and ecological observations. Boll Musei Ist Biol Univ Genova 53:101–113Google Scholar
  15. Corriero G (1990) Distribuzione ed ecologia dei Poriferi in ambienti “confinati mediterranei”. Ph.D. thesis, University of Genova, ItalyGoogle Scholar
  16. Corriero G, Pansini M, Sarà M (1984) Sui poriferi dell’insenatura della Strea a Porto Cesareo (Lecce). Thal Sal 14:3–10Google Scholar
  17. Corriero G, Balduzzi A, Sarà M (1989) Ecological differences in the distribution of two Tethya (Porifera, Demospongiae) species coexisting in a Mediterranean coastal lagoon. Pubbl Staz Zool Napoli (I. Mar Ecol) 10(4):303–315Google Scholar
  18. Corriero G, Sarà M, Vaccaro P (1996a) Sexual and asexual reproduction in two species of Tethya (Porifera, Demospongiae) from a Mediterranean coastal lagoon. Mar Biol 126:175–181CrossRefGoogle Scholar
  19. Corriero G, Scalera Liaci L, Mercurio M (1996b) Il popolamento a Poriferi della Riserva Marina di Porto Cesareo. In: Riass 57th Cong Naz UZI. San Benetto del Tronto, Italy, pp 28Google Scholar
  20. Frøhlich H, Barthel D (1997) Silica uptake of the marine sponge Halichondria panicea in Kiel Bight. Mar Biol 128(1):115–125CrossRefGoogle Scholar
  21. Gaino E, Manconi R, Pronzato R (1995) Organizational plasticity as a successful conservative tactic in sponges. Anim Biol 4:31–43Google Scholar
  22. Genchi C, Calvo S, Lugaro A, Ragonese S (1983) Idrologia di una laguna costiera e caratterizzazione chimico-fisica dei sedimenti recenti in relazione alla distribuzione dei popolamenti vegetali sommersi (lo Stagnone di Marsala). Quad IRPEM 4:23–34Google Scholar
  23. Gherardi M, Giangrande A, Corriero G (2001) Epibiontic and endobiontic polychaetes of Geodia cydonium (Porifera, Demospongiae) from the Mediterranean Sea. Hydrobiologia 443:87–101CrossRefGoogle Scholar
  24. Guide VG (1976) Sponge predation in the oyster reef community as demonstrated with Cliona celata. J Exp Mar Biol Ecol 25:109–122CrossRefGoogle Scholar
  25. Hartman WD (1958) Natural history of the marine sponges of southern New England. Yale University Bulletin 12, Peabody Museum of Natural History, Yale University, New Haven, CTGoogle Scholar
  26. Hill MS, Hill AL (2002) Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. Biol Bull 202:86–95CrossRefGoogle Scholar
  27. Ilan M, Abelson A (1995) The life of a sponge in sandy lagoon. Biol Bull 189:363–369CrossRefGoogle Scholar
  28. Jørgensen CB (1944) On the spicule-formation of Spongilla lacustris (L) 1 The dependence of the spicule-formation on the content of dissolved and solid silicic acid in the milieu. K danske Vidensk Selsk Biol Skr (19)7:1–45Google Scholar
  29. Jørgensen CB (1947) On the spicule-formation of Spongilla lacustris (L.) and Ephydatia fluviatilis (L) 2 The rate of growth of the spicules. K danske Vidensk Selsk Biol Skr (20)10:1–22Google Scholar
  30. Kaandorp JA (1991) Modelling growth forms of the sponge Haliclona oculata (Porifera, Demospongiae) using fractal techniques. Mar Biol 110:203–215CrossRefGoogle Scholar
  31. Kaandorp JA (1999) Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. Mar Biol 134:295–306CrossRefGoogle Scholar
  32. Kaandorp JA, de Kluijver MJ (1992) Verification of fractal growth models of the sponge Haliclona oculata (Porifera) with transplantation experiments. Mar Biol 113:133–143CrossRefGoogle Scholar
  33. Labate M (1968) Ecologia dei Poriferi di acque superficiali di “Porto Cesareo” (Mar Ionio). Boll Zool 35(4):348Google Scholar
  34. Magazzù G (1977) Usefulness of the Marsala lagoon for acquaculture. Nutrients and primary production. Rapp P-v Réun Comm int Explor scient Mer Méditerr 24(6):81–82Google Scholar
  35. McDonald JI, Hooper JNA, McGuinness KA (2002) Environmentally influenced variability in the morphology of Cinachyrella australiensis (Carter 1886) (Porifera: Spirophorida: Tetillidae). Mar Freshw Res 52:79–84CrossRefGoogle Scholar
  36. Mercurio M, Corriero G, Scalera Liaci L (1997a) Sulla forma non sessile di Geodia cydonium (Jameson) in un ambiente superficiale. Biol Mar Medit 4(1):407–409Google Scholar
  37. Mercurio M, Scalera Liaci L, Corriero G (1997b) Modificazioni morfologiche in esemplari non sessili di Geodia cydonium (Jameson) (Porifera, Demospongiae). In: Riass 58th Congr Naz UZI. Cattolica, Italy, 39 ppGoogle Scholar
  38. Mercurio M, Corriero G, Scalera Liaci L, Gaino E (2000) Silica content and spicule size variations in Pellina semitubulosa (Porifera, Demospongiae). Mar Biol 137:87–92CrossRefGoogle Scholar
  39. Mercurio M, Scalera Liaci L, Corriero G (2001) La fauna a poriferi del bacino della Strea di Porto Cesareo (LE). Biol Mar Medit 8(1):403–412Google Scholar
  40. Molinier R, Picard J (1953) Notes biologiques à propos d’un voyage d’étude sur les côtes de Sicile. Ann Inst Océanogr 28:163–188Google Scholar
  41. Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225:1478–1480CrossRefGoogle Scholar
  42. Palumbi SR (1986) How body plans limit acclimation: responses of a demosponge to wave force. Ecology 67:208–214CrossRefGoogle Scholar
  43. Parenzan P (1976) Un habitat marino di tipo subtropicale a Porto Cesareo. Atti VI Simp Naz Cons Nat, Bari, pp 151–157Google Scholar
  44. Passeri L (1974) Sedimentazione carbonatica attuale e diagenesi precoce nella laguna di Porto Cesareo (Penisola Salentina). Extra Suppl Boll Geol It 92:3–40Google Scholar
  45. Pè J (1973) Étude quantitative de la régulation du squelette chez une éponge d’eau douce, vol 84. Archs Biol, Bruxelles, pp 147–173Google Scholar
  46. Pulitzer-Finali (1983) A collection of Mediterranean Demospongiae (Porifera) with, in appendix, a list of the Demospongiae hitherto recorded from the Mediterranean Sea. Ann Mus Civ St Nat Genova 84:445–621Google Scholar
  47. Relini G (2003) Il biofouling Parte Prima: il macrofauling. Biol Mar Medit 10(Suppl):285–326Google Scholar
  48. Riggio S, Sparla MP (1985) Notes on fauna inhabiting Rytyphlöea tinctoria (Clem) C Ag aegagropyla in the stagnone Sound (Western Sicily). Rapp Comm Int Mer Medit 29(4):143–144Google Scholar
  49. Rutzler K (1997) The role of psammobiontic sponges in the reef community. Proceedings of the Eighth International Coral Reef Symposium, vol 2, pp1393–1398Google Scholar
  50. Santucci R (1922) La Geodia cydonium come centro di associazione biologica. In: Mem CIII Com Talas It. Premiate officine Carlo Ferrari (ed) Venezia, pp 5–20Google Scholar
  51. Sarà M, Vacelet J (1973) Ecologie des Démosponges. In: PP Grassé, Masson et Cie (eds) Traité de Zoologie, vol 3. Spongiaires. Paris, France, pp 462–576Google Scholar
  52. Schönberg CHL, Barthel D (1997) Inorganic skeleton of the demosponge Halichondria panicea. Seasonality in spicule production in the Baltic Sea. Mar Biol 130:133–140Google Scholar
  53. Stone AS (1970) Seasonal variation in the gross biochemical composition of Hymeniacidon perleve (Montagu). J Exp Mar Biol Ecol 5:265–271CrossRefGoogle Scholar
  54. Uriz MJ (1981) Estudio sistemático de las esponjas Astrophorida (Demospongia) de los fondos de pesca de arrastre, entre Tossa y Calella (Cataluña). Bol Inst Espa Oceano 6(320):8–58Google Scholar
  55. Vogel S (1981) Life in moving fluids—the physical biology of flow. Willard Grant Press, BostonGoogle Scholar
  56. Wulff JL (1985) Dispersal and survival of fragments of coral reef sponges. Proc Int Coral Reef Symp 5:119–124Google Scholar
  57. Wulff JL (1991) Asexual fragmentation, genotype success, and population dynamics of erect branching sponges. J Exp Mar Biol Ecol 149:227–247CrossRefGoogle Scholar
  58. Wulff JL (1995) Effects of a hurricane on survival and orientation of large erect coral reef sponges. Coral Reefs 14:55–61CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Dipartimento di ZoologiaBariItaly
  2. 2.Dipartimento di Biologia Cellulare e AmbientalePerugiaItaly

Personalised recommendations