Wood Science and Technology

, Volume 53, Issue 6, pp 1223–1234 | Cite as

Microwave-induced thermoacoustic imaging of wood: a first demonstration

  • Dan ZhangEmail author
  • Hang He
  • Chujing Zong
  • Yunfei Liu


Hollow decay is the main problem that affects healthy tree growth and significantly reduces the subsequent practical value of wood. In this work, for the first time, an effective microwave-induced thermoacoustic imaging technology adopted for wood specimens is proposed. The thermoacoustic principle combines microwaves and ultrasonic waves and relies on the microwave penetrating ability and high spatial resolution to generate an ultrasonic excitation source from wood. Thermal ultrasonic imaging technology and high imaging precision present the detection results rapidly, allowing quick, effective, and easy evaluation. This also is the first demonstration of wood microwave-induced thermoacoustic imaging.



The authors wish to thank Professor Zhiqin Zhao, Dr. Shuangli Liu, and Mr. Xiaoxuan Sun for equipment support and experimental help at the University of Electronic Science and Technology of China.


This work was supported by Nanjing Forestry University High-level Talents Start-up Fund (163070694).


  1. Anderson BE, Griffa M, Ulrich TJ, Johnson PA (2007) Improving spatial resolution of a time-reversed focus using frequency-domain signal processing. J Acoust Soc Am 122:3072Google Scholar
  2. Arfken GB, Weber HJ (1995) Mathematical methods for physicists. Academic Press, San DiegoGoogle Scholar
  3. Bauer DR, Wang X, Vollin J, Xin H, Witte RS (2012) Spectroscopic thermoacoustic imaging of water and fat composition. Appl Phys Lett 101:033705CrossRefGoogle Scholar
  4. Bell AG (1880) On the production and reproduction of sound by light. Am J Sci 20:305–324CrossRefGoogle Scholar
  5. Blomgren P, Papanicolaou G, Zhao H (2002) Super-resolution in time-reversal acoustics. J Acoust Soc Am 111:230–248CrossRefGoogle Scholar
  6. Chambers H, Berryman JG (2004) Analysis of the time-reversal operator for a small spherical scatterer in an electromagnetic field. IEEE Trans Antennas Propag 52:1729–1738CrossRefGoogle Scholar
  7. Chen GP, Zhao ZQ, Zheng WJ, Nie ZP, Liu QH (2009) Application of time reversal mirror technique in microwave-induced thermo-acoustic tomography system. Sci China Ser E Technol Sci 52:2087–2095CrossRefGoogle Scholar
  8. Chen GP, Zhao ZQ, Liu QH (2012) The computational study of microwave-induced thermo-acoustic tomography for biologic tissue imaging based on pseudo-spectrum time domain and time reversal mirror technique. Appl Mech Mater 195:353–359CrossRefGoogle Scholar
  9. Chen G, Wang X, Liu QH (2013) Microwave-induced thermo-acoustic tomography system using TRM-PSTD technique. Progr Electromagn Res B 48:43–59CrossRefGoogle Scholar
  10. Deng ZG, Deng RB (1998) Microwave detection of plate defects. For Mach Woodwork Equip 6:30–31Google Scholar
  11. Derode A, Roux P, Fink M (1995) Robust acoustic time reversal with high-order multiple scattering. Phys Rev Lett 75:4206–4209CrossRefGoogle Scholar
  12. Devaney AJ (2000) Super-resolution processing of multi-static data using time reversal and music. Preprint, Department of Electrical Engineering, Northeastern University, Boston, MAGoogle Scholar
  13. Gamier J, Fouque JP, Solna K (2006) Time reversal super resolution in randomly layered media. Wave Motion 43:646–666CrossRefGoogle Scholar
  14. Guo TC, Guo WW, Larsen LE (1984) Microwave-Induced thermoacoustic effect in dielectrics and its coupling to external medium—a thermodynamical formulation. IEEE Trans Microw Theory Tech 32:835–843CrossRefGoogle Scholar
  15. Hristova Y (2009) Time reversal in thermoacoustic tomography—an error estimate. Inverse Probl 25:55008CrossRefGoogle Scholar
  16. Kellnberger S, Hajiaboli A, Razansky D, Ntziachristos V (2011) Near-field thermoacoustic tomography of small animals. Phys Med Biol 56:3433–3444CrossRefGoogle Scholar
  17. Kruger RA, Kiser WL, Reinecke DR, Kruger GA, Eisenhart RL (1999a) Thermoacoustic computed tomography of the breast at 434 MHz. IEEE MTT-S Int Microw Symp Dig 2:591–594Google Scholar
  18. Kruger RA, Kopecky KK, Aisen AM, Reinecke DR, Kruger GA, Kiser WL Jr (1999b) Thermoacoustic CT with radio waves: a medical imaging paradigm. Radiology 211:275–278CrossRefGoogle Scholar
  19. Ku G, Wang LV (2001) Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast. Med Phys 28:4–10CrossRefGoogle Scholar
  20. Lehman SK, Devaney AJ (2003) Transmission mode time-reversal super-resolution imaging. J Acoust Soc Am 113:2742–2753CrossRefGoogle Scholar
  21. Li X, Bond EJ, Van Veen BD, Hagness SC (2005) An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection. IEEE Antennas Propag Mag 47:19–34CrossRefGoogle Scholar
  22. Lin JC (1980) The microwave auditory phenomenon. Proc IEEE 68:67–73CrossRefGoogle Scholar
  23. Lin JC (2005) Microwave thermoelastic tomography and imaging. Springer, New YorkCrossRefGoogle Scholar
  24. Liu DH, Krolik J, Carin L (2007) Electromagnetic target detection in uncertain media: time-reversal and minimum-variance algorithms. IEEE Trans Geosci Remote Sens 45:934–944CrossRefGoogle Scholar
  25. Meaney PM, Goodwin D, Golnabi AH et al (2012) Clinical Microwave tomographic imaging of the calcaneus: a first-in-human case study of two subjects. IEEE Trans Biomed Eng 59:3304–3313CrossRefGoogle Scholar
  26. Morse PM, Feshbach H (1953) Methods of theoretical physics. McGraw-Hill, New YorkGoogle Scholar
  27. Norton SJ, Linzer M (1981) Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans Biomed Eng 28:202–220CrossRefGoogle Scholar
  28. Olivito RS (1996) Ultrasonic measurements in wood. Mater Eval 54:514–517Google Scholar
  29. Ostadrahimi M, Zakaria A, Lovetri J, Shafai L (2013) A near-field dual polarized (TE-TM) microwave imaging system. IEEE Trans Microw Theory Tech 61:1376–1384CrossRefGoogle Scholar
  30. Rayleigh B, Strum JW (1896) The theory of sound, vol 2. Macmillan, LondonGoogle Scholar
  31. Rosenthal A, Jetzfellner T, Razansky D, Ntziachristos V (2012) Efficient framework for model-based tomographic image reconstruction using wavelet packets. IEEE Trans Med Imaging 31:1346–1357CrossRefGoogle Scholar
  32. Ross RJ, Pellerin RF (1988) NDE of wood-based composites withlongitudinal stress wave. For Prod J 38:39–45Google Scholar
  33. Scherzer O (2011) Handbook of mathematical methods in imaging. Springer, New YorkCrossRefGoogle Scholar
  34. Tam AC (1986) Application of photoacoustic sensing techniques. Rev Mod Phys 58:381–431CrossRefGoogle Scholar
  35. Wang JG, Zhao ZQ, Song J, Nie ZP, Liu QH (2013) Reconstruction of microwave absorption of multiple tumors in heterogeneous tissue for microwave-induced thermo-acoustic tomography. Progr Electromagn Res M 32:57–72CrossRefGoogle Scholar
  36. Xie Y, Guo B, Li J, Ku G, Wang LV (2008) Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography. IEEE Trans Biomed Eng 55:2741–2752CrossRefGoogle Scholar
  37. Xu MH, Wang LV (2002) Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans Med Imaging 21:814–822CrossRefGoogle Scholar
  38. Xu MH, Ku G, Wang LV (2001) Microwave-induced thermoacoustic tomography using multi-sector scanning. Med Phys 28:1958–1963CrossRefGoogle Scholar
  39. Xu Y, Feng D, Wang LV (2002a) Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry. IEEE Trans Med Imaging 21:823–828CrossRefGoogle Scholar
  40. Xu Y, Xu MH, Wang LV (2002b) Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry. IEEE Trans Med Imaging 21:829–833CrossRefGoogle Scholar
  41. Zheng WJ, Zhao ZQ, Nie ZP, Liu QH (2009) Evaluation of TRM in the complex through wall environment. Prog Electromagn Res 90:235–254CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information Science and TechnologyNanjing Forestry UniversityNanjingChina

Personalised recommendations