Advertisement

Effects of acetylation on the thermal decomposition kinetics of makino bamboo fibers

  • Yu-Shan Jhu
  • Ke-Chang Hung
  • Jin-Wei Xu
  • Jyh-Horng WuEmail author
Original
  • 13 Downloads

Abstract

In this study, makino bamboo (Phyllostachys makinoi) fibers were acetylated with different solution ratios of acetic anhydride/dimethylformamide using a liquid phase reaction. This reaction resulted in the production of acetylated bamboo fibers (BFs) with the following weight percent gains (WPGs): 2, 6, 9, 13, and 19%. The effects of the acetylation level on the thermal decomposition kinetics of bamboo fibers were evaluated by thermogravimetric analysis. The results revealed that as the acetylation level increased, both the onset and maximum decomposition temperatures increased. In addition, four model-free iso-conversional methods, the Friedman method, Flynn–Wall–Ozawa method, the Starink method, and the modified Coats–Redfern method, were used to determine the thermal decomposition kinetics. Accordingly, the activation energies of thermal decomposition with conversion rates ranging between 10% and 70% were 191–196, 190–191, 192–194, 182–186, 186–191, and 189–201 kJ/mol for unmodified BFs and acetylated BFs with WPGs of 2, 6, 9, 13, and 19%, respectively. There were no significant dependencies among them. Furthermore, the Avrami method was used to determine the reaction order of unmodified BFs (0.47), which was lower than those of acetylated BFs (0.55–0.74).

Notes

Acknowledgements

This work was financially supported by a research grant from the Ministry of Science and Technology, Taiwan (MOST 106-2628-B-005-008-CC3).

References

  1. Antal MJ, Varhegyi G, Jakab E (1998) Cellulose pyrolysis kinetics: revisited. Ind Eng Chem Res 37(4):1267–1275.  https://doi.org/10.1021/ie970144v CrossRefGoogle Scholar
  2. Bledzki A, Wu K, Mamum AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylated on properties of flex fiber and its polypropylene composites. Express Polym Lett 2(6):413–422.  https://doi.org/10.3144/expresspolymlett.2008.50 CrossRefGoogle Scholar
  3. Boonstra MJ, Tjeerdsma B (2006) Chemical analysis of heat treated softwoods. Eur J Wood Prod 64:204–211.  https://doi.org/10.1007/s00107-005-0078-4 CrossRefGoogle Scholar
  4. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A (2000) Computational aspects of kinetic analysis. Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125–143.  https://doi.org/10.1016/S0040-6031(00)00443-3 CrossRefGoogle Scholar
  5. Chaouch M, Pétrissans M, Pétrissans A, Gérardin P (2010) Use of wood elemental composition to predict heat treatment intensity and decay resistance of different softwood and hardwood species. Polym Degrad Stab 95:2255–2259.  https://doi.org/10.1016/j.polymdegradstab.2010.09.010 CrossRefGoogle Scholar
  6. Dittenber DB, Ganga Rao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A-Appl S 43:1419–1429.  https://doi.org/10.1016/j.compositesa.2011.11.019 CrossRefGoogle Scholar
  7. Gai C, Dong Y, Zhang T (2013) The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol 127:298–305.  https://doi.org/10.1016/j.biortech.2012.09.089 CrossRefGoogle Scholar
  8. Gardea-Hernández G, Ibarra-Gómez R, Flores-Gallardo SG, Hernández-Escobar CA, Pérez-Romo P, Zaragoza-Contreras EA (2008) Fast wood fiber esterification. I. Reaction with oxalic acid and cetyl alcohol. Carbohydr Polym 71:1–8.  https://doi.org/10.1016/j.carbpol.2007.05.014 CrossRefGoogle Scholar
  9. Gronli MG, Verhegyi G, Di Blasi C (2002) Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res 41:4201–4208.  https://doi.org/10.1021/ie0201157 CrossRefGoogle Scholar
  10. Huang YF, Kuan WH, Chiueh PT, Lo SL (2011) A sequential method to analyze the kinetics of biomass pyrolysis. Bioresour Technol 102:9241–9246.  https://doi.org/10.1016/j.biortech.2011.07.015 CrossRefGoogle Scholar
  11. Hung KC, Wu JH (2010) Mechanical and interfacial properties of plastic composite panels made from esterified bamboo particles. J Wood Sci 56:216–221.  https://doi.org/10.1007/s10086-009-1090-9 CrossRefGoogle Scholar
  12. Hung KC, Wu TL, Chen YL, Wu JH (2015) Assessing the effect of wood acetylation on mechanical properties and extended creep behavior of wood/recycled-polypropylene composites. Constr Build Master 108:139–145.  https://doi.org/10.1016/j.conbuildmat.2016.01.039 CrossRefGoogle Scholar
  13. Hung KC, Yang CN, Yang TC, Wu TL, Chen YL, Wu JH (2017) Characterization and thermal stability of acetylated slicewood production by alkali-catalyzed esterification. Materials 10:393–406.  https://doi.org/10.3390/ma10040393 CrossRefGoogle Scholar
  14. Kumar V, Tyagi L, Sinha S (2011) Wood flour—reinforced plastic composites: a review. Rev Chem Eng 27:253–264.  https://doi.org/10.1515/REVCE.2011.006 CrossRefGoogle Scholar
  15. Lee CH, Wu TL, Chen YL, Wu JH (2010) Characteristics and discrimination of five types of wood–plastic composites by Fourier transform infrared spectroscopy combined with principal component analysis. Holzforschung 64:699–704.  https://doi.org/10.1515/HF.2010.104 Google Scholar
  16. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composite: a review. J Polym Environ 15:25–33.  https://doi.org/10.1007/s10924-006-0042-3 CrossRefGoogle Scholar
  17. Li Y, Du L, Kai C, Huang R, Wu Q (2013) Bamboo and high density polyethylene composite with heat-treated bamboo fiber: thermal decomposition properties. BioResources 8(1):900–912.  https://doi.org/10.15376/biores.8.1.900-912 CrossRefGoogle Scholar
  18. Liu W, Chen T, Wen X, Qiu R, Zhang X (2014) Enhanced mechanical properties and water resistance of bamboo fiber—unsaturated polyester composites coupled by isocyanatoethyl methacrylate. Wood Sci Technol 48:1241–1255.  https://doi.org/10.1007/s00226-014-0668-6 CrossRefGoogle Scholar
  19. Liu W, Huang J, Wang N, Lei S (2015) The influence of moisture content on the interfacial properties of natural palm fiber-matrix composite. Wood Sci Technol 49:371–387.  https://doi.org/10.1007/s00226-015-0702-3 CrossRefGoogle Scholar
  20. Manyà JJ, Velo E, Puigjaner L (2003) Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res 42(3):434–441.  https://doi.org/10.1021/ie020218p CrossRefGoogle Scholar
  21. Mészáros E, Várhegyi G, Jakab E (2004) Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation. Energy Fuels 18(2):497–507.  https://doi.org/10.1021/ef034030+ CrossRefGoogle Scholar
  22. Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Wolcott MP (2011) Application of micromechanical models to tensile properties of wood–plastic composites. Wood Sci Technol 45:521–532.  https://doi.org/10.1007/s00226-010-0351-5 CrossRefGoogle Scholar
  23. Ou R, Zhao H, Sui S, Song Y, Wang Q (2010) Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites. Compos Part A-Appl S 41:1272–1278.  https://doi.org/10.1016/j.compositesa.2010.05.011 CrossRefGoogle Scholar
  24. Oza S, Ning H, Ferguson I, Lu N (2014) Effect of surface treatment on thermal stability of the hemp-PLA composites: correlation of activation energy with thermal degradation. Compos Part B-Eng 67:227–232.  https://doi.org/10.1016/j.compositesb.2014.06.033 CrossRefGoogle Scholar
  25. Pelaez-Samaniego MR, Yadama V, Lowell E, Espinoza-Herrera R (2013) A review of wood thermal pretreatments to improve wood composite properties. Wood Sci Technol 47:1285–1319.  https://doi.org/10.1007/s00226-013-0574-3 CrossRefGoogle Scholar
  26. Rowell RM (1983) Chemical modification of wood. For Prod Abstr 6:363–382Google Scholar
  27. Saba N, Paridah MT, Jawaid M (2015) Mechanical properties of kenaf fibre reinforced polymer composite: a review. Constr Build Mater 76:87–96.  https://doi.org/10.1016/j.conbuildmat.2014.11.043 CrossRefGoogle Scholar
  28. Saheb DN, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Technol 18:351–363.  https://doi.org/10.1002/(SICI)1098-2329(199924)18:4%3c351:AID-ADV6%3e3.0.CO;2-X CrossRefGoogle Scholar
  29. Tronc E, Hernández-Escobar CA, Ibarra-Gómez R, Estrada-Monje A, Navarrete-Bolaños J, Zaragoza-Contreras EA (2007) Blue agave fiber esterification for the reinforcement of thermoplastic composites. Carbohydr Polym 67:245–255.  https://doi.org/10.1016/j.carbpol.2006.05.027 CrossRefGoogle Scholar
  30. Vuthaluru HB (2004) Investigations into the pyrolytic behavior of coal/biomass blends using thermogravimetric analysis. Bioresour Technol 92:187–195.  https://doi.org/10.1016/j.biortech.2003.08.008 CrossRefGoogle Scholar
  31. Wang X, Liu J, Chai Y (2012) Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol–gel process. BioResources 7(1):893–901.  https://doi.org/10.15376/biores.7.1.893-901 Google Scholar
  32. Wei L, McDonald AG, Freitag C, Morrell JJ (2013) Effects of wood fiber esterification on properties, weatherability and biodurability of wood plastic composites. Polym Degrad Stab 98:1348–1361.  https://doi.org/10.1016/j.polymdegradstab.2013.03.027 CrossRefGoogle Scholar
  33. Wu JH, Hsieh TY, Lin HY, Shiau IL, Chang ST (2004) Properties of wood plasticization with octanoyl chloride in a solvent-free system. Wood Sci Technol 37:363–372.  https://doi.org/10.1007/s00226-003-0198-0 CrossRefGoogle Scholar
  34. Xu C, Leppӓnen AS, Eklund P, Holmlund P, Sjöholm R, Sundberg K, Willför S (2010) Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohydr Res 345:810–816.  https://doi.org/10.1016/j.carres.2010.01.007 CrossRefGoogle Scholar
  35. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788.  https://doi.org/10.1016/j.fuel.2006.12.013 CrossRefGoogle Scholar
  36. Yang CN, Hung KC, Wu TL, Yang TC, Chen YL, Wu JH (2014) Comparisons and characteristics of slicewood acetylation with acetic anhydride by liquid phase, microwave and vapor phase reactions. BioResources 9(4):6463–6475.  https://doi.org/10.15376/biores.9.4.6463-6475 Google Scholar
  37. Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98.  https://doi.org/10.1016/j.polymdegradstab.2007.10.012 CrossRefGoogle Scholar
  38. Zhang F, Endo T, Qiu W, Yang L, Hirotsu T (2002) Preparation and mechanical properties of composite of fibrous cellulose and maleated polyethylene. J Appl Polym Sci 84:1971–1980.  https://doi.org/10.1002/app.10428 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu-Shan Jhu
    • 1
  • Ke-Chang Hung
    • 1
  • Jin-Wei Xu
    • 1
  • Jyh-Horng Wu
    • 1
    Email author
  1. 1.Department of ForestryNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations