Advertisement

Wood Science and Technology

, Volume 53, Issue 1, pp 119–133 | Cite as

Effect of heat treatment on wood chemical composition, extraction yield and quality of the extractives of some wood species by the use of molybdenum catalysts

  • Marisabel MeccaEmail author
  • Maurizio D’Auria
  • Luigi Todaro
Original
  • 100 Downloads

Abstract

The effect of heat treatment and the presence of some molybdenum catalysts on the amount of extractives in Populus nigra, Larix decidua, Paulownia tomentosa, Castanea sativa and Quercus frainetto wood were studied. There are an increase in the amount of lignin and extractives and a decrease in the amount of holocellulose following thermo-treatment, in the treatment temperature range. Autoclave treatment of wood with water in the presence of some molybdenum catalysts can increase the amount of extracts, but it reduces solubility. Soxhlet extraction of wood with ethanol/toluene mixture in the presence of H3PMo12O40 increases the amount of extractives and their solubility in chloroform, while in the presence of MoO3 only the solubility of extractives increases. GC–MS analysis of insoluble fraction showed the presence of myo-inositol and some simple carbohydrates, mainly ribose, xylose and glucose. GC–MS analysis of soluble fraction showed the presence of long-chain acids and fatty acid esters of 10–20 carbon atoms, mainly decanoic acid, hexadecanoic acid and octadecanoic acid, which can be a source of fatty acids for biodiesel production.

Notes

Supplementary material

226_2018_1057_MOESM1_ESM.docx (248 kb)
Supplementary material 1 (DOCX 248 kb)

References

  1. Bartha D, Roloff A, Weisgerber H, Lang UM, Stimm B, Schütt P (1998) Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie (Encyclopedia of woody plants: handbook and atlas of dendrology). Wiley-VCH, WeinheimGoogle Scholar
  2. Bespalov VG, Alexandrov VA, Korman DB, Baranenko DA (2016) Phenozan, a synthetic phenolic antioxidant, inhibits the development of spontaneous tumors in rats and mice. Drug Res 66(09):489–494CrossRefGoogle Scholar
  3. Bianchi S, Kroslakova I, Janzon R, Mayer I, Saake B, Pichelin F (2015) Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species. Phytochemistry 120:53–61CrossRefGoogle Scholar
  4. Bosman AA, Combrinck S, Roux-Van der Merwe R, Botha BM, McCrindle RI, Houghton PJ (2004) Isolation of an anthelmintic compound from Leucosidea sericea. S Afr J Bot 70(4):509–511CrossRefGoogle Scholar
  5. Bourgois J, Bartholin MC, Guyonnet R (1989) Thermal treatment of wood: analysis of the obtained product. Wood Sci Technol 23:303–310CrossRefGoogle Scholar
  6. Cademartori PHG, dos Santos PS, Serrano L, Labidi J, Gatto DA (2013) Effect of thermal treatment on physicochemical properties of Gympie messmate wood. Ind Crops Prod 45:360–366CrossRefGoogle Scholar
  7. D’Auria M, Colella C, Masini N (2014) Francesco Mauro-un chimico lucano (Francesco Mauro-a lucan chemist). Edizioni Scientifiche Italiane, NapoliGoogle Scholar
  8. D’Auria M, Mecca M, Todaro L (2017) Chemical characterization of cedrus deodara wood extracts using water and molybdenum catalysts. J Wood Chem Technol 37:163–170CrossRefGoogle Scholar
  9. Dieste A, Rodrıguez K, Bano V (2012) Wood–water relations of chestnut wood used for structural purposes. Eur J Wood Prod 71:133–134CrossRefGoogle Scholar
  10. Esteves B, Pereira H (2009) Wood modification by heat treatment: a review. Bioresources 4:370–404Google Scholar
  11. Esteves B, Graça J, Pereira H (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62(3):344–351CrossRefGoogle Scholar
  12. Ferrari S, Allegretti O, Cuccui I, Moretti N, Marra M, Todaro L (2013a) A revaluation of turkey oak wood (Quercus cerris L.) through combined steaming and thermo-vacuum treatments. Bioresources 8:5051–5066Google Scholar
  13. Ferrari S, Cuccui I, Allegretti O (2013b) Thermo-vacuum modification of some European softwood and hardwood species treated at different conditions. Bioresources 8:1100–1109Google Scholar
  14. Frison E, Lefèvre F, De Vries S, Turok J (1995). Populus nigra network. Report of the first meeting, 3–5 Oct 1994, Izmit, Turkey. IPGRI, Rome, ItalyGoogle Scholar
  15. Gironi F, Piemonte V (2011) Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chem Eng Res Des 89:857–862CrossRefGoogle Scholar
  16. Hart BA, Simons JM, Shoshan KS, Bakker NP, Labadie RP (1990) Antiarthritic activity of the newly developed neutrophil oxidative burst antagonist apocynin. Free Radic Biol Med 9(2):127–131CrossRefGoogle Scholar
  17. Hill C (2007) Wood modification: chemical, thermal and other processes. Wiley, ChichesterGoogle Scholar
  18. ISO 14040 (2006) Environmental management: life cycle assessment—principles and framework. International Organization for Standardization, GenevaGoogle Scholar
  19. ISO 14044 (2006) Environmental management: life cycle assessment—requirements and guidelines. International Organization for Standardization, GenevaGoogle Scholar
  20. Jamsa S, Viitaniemi P (2001) Heat treatment of wood better durability without chemicals. In: Rapp AO (ed) Review on heat treatments of wood. Cost Action E22. Proceedings of the special seminar, Antibes, France, pp 17–22Google Scholar
  21. Javidi J, Esmaeilpour M, Rahiminezhad Z, Dodeji FN (2014) Synthesis and characterization of H3PW12O40 and H3PMo12O40 nanoparticles by a simple method. J Cluster Sci 25:1511–1524CrossRefGoogle Scholar
  22. Jones JC (2015) Letter: fire loads and the calorific value of wood. Fuel 159:975CrossRefGoogle Scholar
  23. Kaygın B, Gündüz G, Aydemir D (2009) Some physical properties of heat-treated paulownia (Paulownia elongata) wood. Dry Technol 27:89–93CrossRefGoogle Scholar
  24. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRefGoogle Scholar
  25. Mecca M, Todaro L, D’Auria M (2017) Extractives from cedar deodara and alnus cordata in the presence of molybdenum catalysts. Chem Sel 2:2536–2538Google Scholar
  26. Mohareb A, Sirmah P, Petrissans M, Gerardin P (2012) Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. Eur J Wood Prod 70:519–524CrossRefGoogle Scholar
  27. Mordi RC, Fadiaro AE, Owoeye TF, Olanrewaju IO, Uzoamaka GC, Olorunshola SJ (2016) Identification by GC–MS of the components of oils of banana peels extract, phytochemical and antimicrobial analyses. Res J Phytochem 10(1):39–44CrossRefGoogle Scholar
  28. Mukherjee A, Mandal T, Ganguly A, Chatter PK (2016) Lignin degradation in the production of bioethanol: a review. ChemBioEng Rev 3:86–96CrossRefGoogle Scholar
  29. Nuopponen M, Vuorinen T, Jamsä S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24(1):13–26CrossRefGoogle Scholar
  30. Pferschy-Wenzig EM, Kunert O, Presser A, Bauer R (2008) In vitro anti-inflammatory activity of larch (Larix decidua L.) sawdust. J Agric Food Chem 56:11688–11693CrossRefGoogle Scholar
  31. Podgorsˇek A, Zupan M, Iskra J (2009) Oxidative halogenation with “green” oxidants: oxygen and hydrogen peroxide. Angew Chem Int Ed 48:8424–8450CrossRefGoogle Scholar
  32. Rahimi R, Fatemeh R, Mahboubeh R (2014) Synthesis characterization and photocatalytic activity of porphyrin-polyoxometalate hybrid material. The 18th international electronic conference on synthetic organic chemistry. Multidisciplinary Digital Publishing Institute, Basel, pp 3–4Google Scholar
  33. Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PCA, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Inter Ed 55:8164–8215CrossRefGoogle Scholar
  34. Rowe JW (ed) (1989) Natural product of woody plants. Springer, Berlin, pp 952–978Google Scholar
  35. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2012) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton, pp 33–72CrossRefGoogle Scholar
  36. Salem MZM, Elansary HO, Elkelish AA, Zeidler A, Ali HM, Hefny MEL, Yessoufou K (2016) In vitro bioactivity and antimicrobial activity of picea abies and Larix decidua wood and bark extracts. Bioresources 11:9421–9437CrossRefGoogle Scholar
  37. Setzer WN (2011) Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. J Mol Model 17(8):1841–1845CrossRefGoogle Scholar
  38. Stefanska J, Pawliczak R (2008) Apocynin: molecular aptitudes. Mediat Inflamm 2008:106507CrossRefGoogle Scholar
  39. Suzuki K, Hayakawa T, Shimizu M, Takehira K (1994) Partial oxidation of methane over silica supported molybdenum oxide catalysts. Cat Lett 30:159–169CrossRefGoogle Scholar
  40. Tayebee R, Alizadeh MH (2007) Water as an efficient solvent for oxygenation transformations with 34% hydrogen peroxide catalyzed by some heteropolyoxometalates. Monatsh Chem 138:763–769CrossRefGoogle Scholar
  41. Tjeerdsma BF, Boonstra M, Pizzi A, Tekely H, Millitz H (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh Werkst 56:149–153CrossRefGoogle Scholar
  42. Todaro L, Rita A, Cetera P, D’Auria M (2015) Thermal treatment modifies the calorific value and ash content in some wood species. Fuel 140:1–3CrossRefGoogle Scholar
  43. Wikberg H, Maunu SL (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58(4):461–466CrossRefGoogle Scholar
  44. Yasuda K, Ikushiro S, Wakayama S, Itoh T, Yamamoto K, Kamakura M, Munetsuna E, Ohta M, Sakaki T (2012) Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver. Drug Metab Dispos 40(10):1917–1926CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Marisabel Mecca
    • 1
    Email author
  • Maurizio D’Auria
    • 1
  • Luigi Todaro
    • 2
  1. 1.Department of ScienceUniversity of BasilicataPotenzaItaly
  2. 2.School of Agricultural Forestry, Food, and Environmental ScienceUniversity of BasilicataPotenzaItaly

Personalised recommendations