Wood Science and Technology

, Volume 52, Issue 6, pp 1701–1706 | Cite as

Myth versus reality: Do parabolic sorption isotherm models reflect actual wood–water thermodynamics?

  • Samuel L. ZelinkaEmail author
  • Samuel V. Glass
  • Emil Engelund Thybring


It has been known for over 35 years that commonly used sorption isotherm models fail to correctly predict wood–water properties such as heat of sorption. Despite this, their use to determine thermodynamic quantities and monolayer moisture contents persists and in fact is increasing in frequency. In this paper, we recommend the use of the “ABC isotherm,” which is mathematically equivalent to sorption isotherm models commonly used for wood but has the added benefits of simplicity, avoidance of a conceptual image of water sorption that is contradicted by measurements, and avoidance of any additional step of identifying quantities that are physically incorrect.



The authors thank JF Scott’s paper (2007) playfully criticizing data published on supposedly ferroelectric materials for an inspiration to this paper. SLZ and EET are thankful for the traveling grant for SLZ from “IGN International Academy,” while EET acknowledges funding from the VILLUM FONDEN postdoc program.


  1. Anderson RB (1946) Modifications of the Brunauer, Emmett, and Teller equation. J Am Chem Soc 68:686–691CrossRefGoogle Scholar
  2. Anderson RB, Hall WK (1948) Modifications of the Brunauer, Emmett, and Teller equation II. J Am Chem Soc 70:1727–1734. CrossRefPubMedGoogle Scholar
  3. Araujo CD, Avramidis S, Mackay AL (1994) Behavior of solid wood and bound water as a function of moisture-content a proton magnetic-resonance study. Holzforschung 48:69–74CrossRefGoogle Scholar
  4. Boquet R, Chirife J, Iglesias HA (1980) Technical note—on the equivalence of isotherm equations. J Food Technol 15:345–349CrossRefGoogle Scholar
  5. Bratasz Ł, Kozłowska A, Kozłowski R (2012) Analysis of water adsorption by wood using the Guggenheim–Anderson-de Boer equation. Eur J Wood Prod 70:445–451. CrossRefGoogle Scholar
  6. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  7. Chauhan SS, Aggarwal P, Karmarkar A, Pandey KK (2001) Moisture adsorption behaviour of esterified rubber wood (Hevea brasiliensis). Holz Roh Werkst 59:250–253CrossRefGoogle Scholar
  8. Chen C-M, Wangaard FF (1968) Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Sci Technol 2:177–187Google Scholar
  9. De Boer JH (1953) The dynamical character of adsorption. Clarendon Press, OxfordGoogle Scholar
  10. Dent RW (1977) Multilayer theory for gas sorption. 1 Sorption of a single gas. Text Res J 47:145–152CrossRefGoogle Scholar
  11. Dieste A, Krause A, Militz H (2008) Modification of Fagus sylvatica (L.) with 1,3-dimethylol-4,5-dihydroxyethylene urea (DMDHEU): Part 1. Estimation of heat adsorption by the isosteric method (Hailwood–Horrobin model) and by solution calorimetry. Holzforschung 62:577–583CrossRefGoogle Scholar
  12. Esteban LG, Fernandez FG, Casasus AG, De Palacios PD, Gril J (2006) Comparison of the hygroscopic behaviour of 205-year-old and recently cut juvenile wood from Pinus sylvestris L. Ann For Sci 63:309–317CrossRefGoogle Scholar
  13. Esteban LG, de Palacios P, Fernández FG, Guindeo A, Cano NN (2008a) Sorption and thermodynamic properties of old and new Pinus sylvestris wood. Wood Fiber Sci 40:111–121Google Scholar
  14. Esteban LG, de Palacios P, Fernandez FG, Guindeo A, Conde M, Baonza V (2008b) Sorption and thermodynamic properties of juvenile Pinus sylvestris L. wood after 103 years of submersion. Holzforschung 62:745–751. CrossRefGoogle Scholar
  15. Esteban LG, de Palacios P, Fernandez FG, Martin JA, Genova M, Fernandez-Golfin JI (2009) Sorption and thermodynamic properties of buried juvenile Pinus sylvestris L. wood aged 1,170 ± A 40 BP. Wood Sci Technol 43:679–690. CrossRefGoogle Scholar
  16. Esteban LG, de Palacios P, Fernandez FG, Garcia-Amorena I (2010) Effects of burial of Quercus spp. wood aged 5910 ± 250 BP on sorption and thermodynamic properties. Int Biodeterior Biodegrad 64:371–377. CrossRefGoogle Scholar
  17. Guggenheim EA (1966) Applications of statistical mechanics. Oxford University Press, New YorkGoogle Scholar
  18. Hailwood AJ, Horrobin S (1946) Absorption of water by polymers: analysis in terms of a simple model. Trans Faraday Soc 42:B084–B092. CrossRefGoogle Scholar
  19. Hartley ID (2000) Application of the GAB sorption isotherm model to Klinki Pine (Araucaria klinkii Lauterb.). Holzforschung 54:661–663. CrossRefGoogle Scholar
  20. Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. CrossRefGoogle Scholar
  21. Hill CAS, Norton A, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514CrossRefGoogle Scholar
  22. Jalaludin Z, Hill CAS, Samsi HW, Husain H, Xie Y (2010a) Analysis of water vapour sorption of oleo-thermal modified wood of Acacia mangium and Endospermum malaccense by a parallel exponential kinetics model and according to the Hailwood–Horrobin model. Holzforschung 64:763–770CrossRefGoogle Scholar
  23. Jalaludin Z, Hill CAS, Xie Y, Samsi HW, Husain H, Awang K, Curling SF (2010b) Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok. Wood Mater Sci Eng 5:194–203CrossRefGoogle Scholar
  24. Kelsey K (1957) The sorption of water vapour by wood Aust J Appl Sci 8Google Scholar
  25. Krupińska B, Strømmen I, Pakowski Z, Eikevik TM (2007) Modeling of sorption isotherms of various kinds of wood at different temperature conditions. Dry Technol 25:1463–1470. CrossRefGoogle Scholar
  26. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  27. Murata K, Watanabe Y, Nakano T (2013) Effect of thermal treatment on fracture properties and adsorption properties of spruce wood. Materials 6:4186–4197. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Olek W, Majka J, Czajkowski L (2013) Sorption isotherms of thermally modified wood. Holzforschung 67:183–191. CrossRefGoogle Scholar
  29. Papadopoulos AN (2005) Moisture adsorption isotherms of two esterified Greek hardwoods. Holz Roh Werkst 63:123–128CrossRefGoogle Scholar
  30. Papadopoulos A (2011) Sorption studies of chemically modified elm wood with acetic or maleic anhydride. J Indian Acad Wood Sci 8:32–36. CrossRefGoogle Scholar
  31. Papadopoulos AN (2012) Sorption of acetylated pine wood decayed by brown rot, white rot and soft rot: different fungi—different behaviours. Wood Sci Technol 46:919–926. CrossRefGoogle Scholar
  32. Papadopoulos A, Hill C (2003) The sorption of water vapour by anhydride modified softwood. Wood Sci Technol 37:221–231CrossRefGoogle Scholar
  33. Papadopoulos AN, Avramidis S, Elustondo D (2005) The sorption of water vapour by chemically modified softwood: analysis using various sorption models. Wood Sci Technol 39:99–112CrossRefGoogle Scholar
  34. Popper R, Bariska M (1972) Acylation of wood. 1. Sorption behavior of water vapor. Holz Roh Werkst 30:289–294CrossRefGoogle Scholar
  35. Popper R, Niemz P, Eberle G (2005) Untersuchungen zum Sorptions- und Quellungsverhalten von thermisch behandeltem Holz (Investigations on the sorption and swelling properties of thermally treated wood). Holz Roh Werkst 63:135–148. (in German) CrossRefGoogle Scholar
  36. Popper R, Niemz P, Torres M (2006) Influence of the extractives of selected extraneous woods on the equilibrium moisture content. Holz Roh Werkst 64:491–496CrossRefGoogle Scholar
  37. Scott J (2007) Ferroelectrics go bananas. J Phys Condens Matter 20:021001CrossRefGoogle Scholar
  38. Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, BlacksburgGoogle Scholar
  39. Simón C, Esteban LG, de Palacios P, Fernández FG, García-Iruela A, Martín-Sampedro R, Eugenio ME (2017) Sorption and thermodynamic properties of wood of Pinus canariensis C. Sm. ex DC. buried in volcanic ash during eruption. Wood Sci Technol 51:517–534. CrossRefGoogle Scholar
  40. Simpson W (1980) Sorption theories applied to wood. Wood Fiber Sci 12:183–195Google Scholar
  41. Skaar C (1988) Wood–water relations. Springer, New YorkCrossRefGoogle Scholar
  42. Spalt H (1958) The fundamentals of water vapor sorption by wood. For Prod J 8:288–295Google Scholar
  43. Willems W (2015) A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69:67–75CrossRefGoogle Scholar
  44. Xie YJ, Hill CAS, Xiao ZF, Jalaludin Z, Militz H, Mai C (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117:1674–1682Google Scholar
  45. Yasuda R, Minato K, Norimoto M (1994) Chemical modification of wood by nonformaldehyde cross-linking reagents. 2 Moisture adsorption and creep-properties. Wood Sci Technol 28:209–218CrossRefGoogle Scholar
  46. Zaihan J, Hill CAS, Curling S, Hashim WS, Hamdan H (2009) Moisture adsorption isotherms of Acacia mangium and Endospermum malaccense using dynamic vapour sorption. J Trop For Sci 21:277–285Google Scholar
  47. Zaihan J, Hill CAS, Hashim WS, Dahlan JM, Sun DY (2011) Analysis of the water vapour sorption isotherms of oil palm trunk and rubberwood. J Trop For Sci 23:97–105Google Scholar
  48. Zelinka SL, Glass SV (2010) Water vapor sorption isotherms for southern pine treated with several waterborne preservatives ASTM. J Test Eval 38:80–88Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Building and Fire SciencesUS Forest Service, Forest Products LaboratoryMadisonUSA
  2. 2.Department of Geosciences and Natural Resource ManagementUniversity of CopenhagenFrederiksberg CDenmark

Personalised recommendations